CHAPITRE 25

Variables aléatoires discrètes

Dans tout le chapitre, (Ω, \mathcal{A}, P) est un espace probabilisé.

1.

VARIABLES ALÉATOIRES DISCRÈTES

Définition 1 | Variable aléatoire discrète

Une variable aléatoire discrète (réelle) est une fonction $X : \Omega \to \mathbf{R}$ telle que

- 1. $X(\Omega) = \{u_i, i \in I\}$ où I est une partie finie ou dénombrable de \mathbb{N} (on dit que la variable aléatoire prend un nombre dénombrable de valeurs),
- 2. pour tout $i \in I$, $[X = u_i]$ est un événement de \mathcal{A} .

Exemple 1 — $X(\Omega)$ peut être par exemple :

- 1. un ensemble fini (comme au premier semestre),
- 2 №
- 3. l'ensemble des valeurs d'une suite quelconque.

Remarque 1.1 — Si X est une variable aléatoire, alors pour tout sous-ensemble $J \subset X(\Omega)$ on obtient rapidement que $[X \in J]$ est un événement. En effet :

$$[X \in J] = \cup_{j \in J} [X = j].$$

 $[X \in J]$ a donc été écrit comme une union (au plus) dénombrable d'événements : c'est donc un événement. Il en découle directement que si par exemple X(Omega) = N, alors pour tout $n \in N$, les ensembles $[X \le n]$, [X < n], $[X^2 + 1 > n]$ sont par exemple des événements. Pour s'en convaincre, on se rend compte que le premier correspond à J = [0, n].

Définition 2 | Loi d'une VA discrète

La loi d'une VA discrète X est la donnée des probabilités P(X = x) pour $x \in \Omega$.

Définition 3 | Fonction d'une VA

Si g est une fonction définie sur $X(\Omega)$ alors Y = g(X) est la variable aléatoire définie par $Y(\omega) = g(X(\omega))$.

On a $Y(\Omega) = g(X(\Omega))$ et la loi de Y est donnée pour tout $y \in g(X)$ par

$$P(Y = y) = \sum_{x \in X(\Omega), g(x) = y} P(X = x).$$

Exemple 2 — Soit X la VA définie par $X(\Omega) = N^*$ et pour tout $n \in N^*$, $P(X = n) = \frac{1}{2^n}$. On définit $Y = \frac{(-1)^X + 1}{2}$. Donner la loi de Y.

On identifie ici la fonction $g: x \mapsto \frac{(-1)^x + 1}{2}$. On a Y = g(X).

- 1. Déterminons d'abord $Y(\Omega)$: si X est pair, Y = 1 et si X est impair, Y = 0. Donc $Y(\Omega) = \{0, 1\}$. On peut déjà en déduire que Y suit une loi de Bernoulli.
- 2. Déterminons pour tout $y \in Y(\Omega)$, P(Y = y). Il suffit ici de calculer P(Y = 1). On a :

$$P(Y = 1) = \sum_{x \in X(\Omega), g(x) = 1} P(X = x)$$

$$= \sum_{n \ge 1, g(n) = 1}^{+\infty} P(X = n)$$

$$= \sum_{n \ge 1, n \text{ pair}}^{+\infty} P(X = n)$$

$$= \sum_{n = 1}^{+\infty} P(X = 2n)$$

$$= \sum_{n = 1}^{+\infty} \frac{1}{2^{2n}}$$

$$= \sum_{n = 1}^{+\infty} \frac{1}{4^n}$$

$$= \frac{1}{4} \frac{1}{1 - \frac{1}{4}}$$

$$= \frac{1}{3}.$$

Ainsi $P(Y = 1) = \frac{1}{3}$ et donc $P(Y = 0) = \frac{2}{3}$. On en déduit que $Y \hookrightarrow \mathcal{B}(\frac{1}{3})$.

Définition 4 | VA discrète indépendantes

Des variables aléatoires discrètes X_1, \dots, X_n sont (mutuellement) indépendantes si

$$\forall (x_1, \dots, x_n) \in X_1(\Omega) \times \dots \times X_n(\Omega), P(\bigcap_{i=1}^n [X_i = x_i]) = \prod_{i=1}^n P(X_i = x_i).$$

X

Attention

Cette condition est plus forte que la condition "les variables sont indépendantes deux à deux" définie par : si $i \neq j$ alors pour tout $(x_i, x_i) \in X_i(\Omega) \times X_i(\Omega)$,

$$P([X_i = x_i] \cap [X_i = x_i]) = P(X_i = x_i) \times P(X_i = x_i).$$

Exemple 3 — Soient X, Y deux variables aléatoires de Rademacher indépendantes, alors X, Y et XY sont deux à deux indépendantes, mais pas mutuellement indépendantes.

Proposition 1 —

Soient $X_1, ..., X_n$ des variables aléatoires discrètes indépendantes. Alors pour tout $(J_1, ..., J_n)$ n-uplet de sous-ensembles respectifs de $X_1(\Omega), ..., X_n(\Omega)$, on a

$$P\left(\bigcap_{i=1}^{n} [X_i \in J_i]\right) = \prod_{i=1}^{n} P(X_i \in J_i).$$

Exemple 4 — Si pour tout i, $X_i(\Omega) = \mathbb{N}$, alors pour tout m_1, \dots, m_n des entiers naturels,

$$P\left(\bigcap_{i=1}^{n} [X_i \leq m_i]\right) = \prod_{i=1}^{n} P(X_i \leq m_i).$$

Ici,
$$J_i = \{0, ..., m_i\}$$
.

2.

ESPÉRANCE D'UNE VA DISCRÈTE

Contrairement au cas des variables aléatoires finies, l'existence de l'espérance n'est pas acquise ici.

Définition 5 | Espérance d'une VA discrète _____

On dit que X admet une espérance si la série

$$\sum_{x \in \mathrm{X}(\Omega)} x \mathrm{P}(\mathrm{X} = x)$$

est absolument convergente. On définit alors l'espérance de X par

$$E(X) = \sum_{x \in X(\Omega)} x P(X = x).$$

Remarque 2.1 —

1. Par la formule de transfert (voir plus loin), cela revient à dire que |X| admet une espérance car l'absolue convergence de la série s'écrit

$$\sum_{x \in X(\Omega)} |x| P(X = x) < +\infty.$$

2. L'absolue convergence assure ici que la somme peut se faire dans n'importe quel ordre donné sur les *x* (admis).

Théorème 1 | Linéarité de l'espérance _

Si X et Y sont deux VA discrètes sur un même espace probabilisé qui admettent un espérance, et si $(a, b) \in \mathbb{R}^2$, alors aX + bY admet une espérance et

$$E(aX + bY) = aE(X) + bE(Y).$$

Théorème 2 | Croissance de l'espérance —

Si X et Y sont deux VA discrètes sur un même espace probabilisé qui admettent un espérance, et si $X \le Y$,

$$E(X) \leq E(Y)$$
.

Théorème 3 Existence d'une espérance par domination

Si X et Y sont deux VA discrètes sur un même espace probabilisé telles que :

- |X| ≤ Y
- Y admet une espérance

alors X admet une espérance et $|E(X)| \le E(Y)$.

Remarque 2.2 — Théorème admis.

Remarque 2.3 — On a aussi un inégalité triangulaire

$$|E(X)| \leq E(|X|)$$
.

Théorème 4 | Théorème de transfert _____

Soit X une VA discrète et g une fonction sur $X(\Omega)$. Alors g(X) admet une espérance si et seulement si la série

$$\sum_{x \in X(\Omega)} g(x) P(X = x)$$

est absolument convergente. Dès lors

$$E(g(X)) = \sum_{x \in X(\Omega)} g(x) P(X = x).$$

Remarque 2.4 —

- 1. L'absolue convergence assure que la somme ne dépend pas de l'ordre de sommation.
- 2. Théorème admis.

Exemple 5 — Soit X la variable aléatoire définie par $X(\Omega) = N$ et $\forall n \in N, P(X = n) = \frac{1}{e^{n}!}$. On définit $Y = (-2)^{X}$. Montrer que Y admet une espérance et la calculer.

1. On montre que Y admet une espérance en montrant que la série $\sum_{x \in X(\Omega)} (-2)^X P(X = x)$ converge **absolument**. Cela revient à montrer que la série

$$\sum_{n=0}^{+\infty} \frac{|(-2)^n|}{e n!}$$
 converge.

C'est bien le cas car on reconnait une série exponentielle :

$$\sum_{n=0}^{+\infty} \frac{2^n}{e \, n!} = \frac{e^2}{e} = e.$$

La variable aléatoire Y admet donc une espérance.

2. On calcule alors l'espérance

$$\sum_{n=0}^{+\infty} \frac{(-2)^n}{e n!} = \frac{e^{-2}}{e} = e^{-3}$$

car on reconnaît une série exponentielle. Ainsi $E(Y) = e^{-3}$.

Remarque 2.5 — On doit, sauf cas particulier, montrer l'existence de l'espérance avant et à part du calcul. Cela doit bien être explicite sur la copie. Le seul cas où c'est facultatif est si on obtient une série à terme positif. Il faut alors le signaler et dire explicitement que c'est pour cette raison qu'on peut faire un seul calcul.

3.

VARIANCE, MOMENTS

Définition 6 | Moment d'une VA −

X admet un moment d'ordre $r \in \mathbb{N}^*$ si et seulement si X^r admet une espérance. Le moment d'ordre r de X est alors $E(X^r)$.

Proposition 2 ——

Si X admet un moment d'ordre r alors X admet un moment d'ordre k pour tout $k \in [0, r]$.

Remarque 3.1 — Si X est une variable aléatoire bornée alors elle admet des moments d'ordre r pour tout $r \in \mathbf{N}^*$ car soit M > 0 tel que pour tout $|X| \le M$ alors $|X^r| \le M^r$ et la variable constante M^r admet une espérance. Donc par domination X^r admet une espérance.

Définition 7 | Variance d'une VA discrète _____

Soit X une variable aléatoire qui admet une espérance, alors si $(X - E(X))^2$ une espérance on dit que X admet une variance. Celle-ci est définie par

$$V(X) = E[(X - E(X))^{2}].$$

Théorème 5 | Formules de Huygens-Koenig ——

Soit X une VA discrète, alors X admet une variance si et seulement si X^2 admet une espérance (ou si X admet un moment d'ordre 2). Alors on a la formule de Huygens-Koenig :

$$V(X) = E(X^2) - E(X)^2.$$

Définition 8 | Écart-type _____

Si X admet une variance, alors on écart-type est défini par

$$\sigma(X) = \sqrt{V(X)}.$$

- Proposition 3 ———

Si X admet une variance alors aX + b aussi (avec $a, b \in \mathbb{R}$) et

$$V(aX + b) = a^2V(X).$$

Définition 9 | Variable centrée, réduite _____

Soit X une VA discrète, on dit que :

- 1. X est centrée si elle admet une espérance et que E(X) = 0,
- 2. X est réduite si elle admet une variance et que V(X) = 1.

Exemple 6 — Si X admet un moment d'ordre 2, alors $\frac{X-E(X)}{\sigma(X)}$ est une variable centrée

Thomas Cometx

réduite.

Proposition 4 —

Soit X une VA discrète

V admet une variance et $V(X) = 0 \iff X$ est constante.

INTRODUCTION À LA FONCTION DE RÉPARTITION

Définition 10 | Fonction de répartition _

Si X est une variable aléatoire discrète, alors sa fonction de répartition est définie sur ℝ par

$$F_X(x) = P(X \le x).$$

La fonction de répartition vérifie quelques propriétés

- Proposition 5 | Fonction de répartition de d'une VA discrète 🗕

Si F_X est la fonction de répartition d'une VA discrète X alors :

- 1. F_x est croissante
- 2. F_x est continue et constante par morceaux. Les points de discontinuités sont les points de $X(\Omega)$.
- 3. $\lim_{x \to -\infty} F_X(x) = 0$ et $\lim_{x \to +\infty} F_X(x) = 1$.

Remarque 4.1 — La simulation de variables aléatoires en utilisant la fonction de répartition a été vue en TP.

Définition 11 | Fonction de répartition - version discrète ____

Pour une variable aléatoire discrète à valeur dans N, on utilisera souvent une fonction de répartition discrète définie par

$$F_{X}(n) = P(X \le n) = \sum_{k=0}^{n} P(X = k).$$

(Lien fonction de répartition discrète - probabilité)

Dans certains cas, la fonction de répartition discrète sera plus facile à calculer

que la probabilité elle même. On retiendra absolument le lien

$$P(X = n) = P(X \le n) - P(X \le n - 1)$$

= $F_X(n) - F_X(n - 1)$.

5.

LOIS USUELLES

5.1. Retour sur la VA certaine

On rappelle que qu'une VA certaine X est définie par :

- $X(\Omega) = \{x_0\}$ pour un certain $x_0 \in \mathbb{R}$,
- $P(X = x_0) = 1$.

Ainsi sa fonction de répartition est :

$$F_{X}(x) = \begin{cases} 0 \text{ si } x < x_{0} \\ 1 \text{ si } x \ge x_{0}. \end{cases}$$

5.2. Retour sur la VA de Bernoulli

On rappelle que qu'une VA de Bernoulli X est définie par :

- $X(\Omega) = \{0, 1\},$
- $P(X = 0) = P(X = 1) = \frac{1}{2}$.

Ainsi sa fonction de répartition est :

$$F_{X}(x) = \begin{cases} 0 \text{ si } x < 0 \\ \frac{1}{2} \text{ si } 0 \le x < 1 \\ 1 \text{ si } x \ge 1. \end{cases}$$

5.3. Loi géométrique

Définition 12 | Loi géométrique ____

On dit qu'une VA X suit une loi géométrique de paramètre $p \in]0,1[$ si :

- $X(\Omega) = \mathbb{N}^*$,
- $\forall n \in \mathbb{N}^*, P(X = n) = p(1 p)^{n-1}.$

Remarque 5.1 — La loi géométrique de paramètre 1 et une loi certaine (VA constante étale à 1). La loi géométrique de paramètre 0 n'a pas de sens et pas d'intérêt.

Remarque 5.2 — La loi géométrique est la loi du rang d'apparition du premier succès dans une épreuve de Bernoulli sans mémoire.

Σ

Notation

On note $X \hookrightarrow \mathcal{G}(p)$.

Proposition 6 | Espérance et variance

Soit $X \hookrightarrow \mathcal{G}(p)$ pour $p \in [0,1]$, alors X admet une espérance et une variance. On a :

- 1. $E(X) = \frac{1}{p}$,
- 2. $V(X) = \frac{p}{p^2}$.

− Proposition 7 | Fonction de répartition -

Soit X une variable aléatoire géométrique de paramètre p, alors pour tout $n \in \mathbb{N}$,

$$F_X(n) = P(X \le n) = 1 - (1 - p)^n.$$

5.4. Loi de Poisson

Définition 13 | **Loi de Poisson** –

On dit qu'une VA X suit une loi de Poisson de paramètre $\lambda > 0$ si :

- $X(\Omega) = \mathbb{N}$,
- $\forall n \in \mathbb{N}, P(X = n) = e^{-\lambda} \frac{\lambda^k}{k!}$.

Remarque 5.3 — La loi de Poisson modélise le nombre d'événements qui se passent dans un intervalle de temps fixé, si on suppose que

- la fréquence d'arrivée de l'événement est connue
- les occurrences de ces événements sont indépendantes.

Par exemple, si en moyenne les clients d'un supermarché arrivent en caisse avec une fréquence de 1 minutes, le nombre de clients qui arrivent dans un intervalle de temps d'une heure (soit 60 minutes) sera modélisé par une loi de Poisson de paramètre 60.

Notation

On note $X \hookrightarrow \mathscr{P}(\lambda)$.

_ Proposition 8 | Espérance et variance _

Soit $X \hookrightarrow \mathcal{P}(\lambda)$ pour $\lambda > 0$, alors X admet une espérance et une variance. On a :

- 1. $E(X) = \lambda$,
- 2. $V(X) = \lambda$.