DEVOIR MAISON 10#

A rendre pour le 29 avril 2024. Traiter les exercices 1 à 4 puis le 5 ou le 6.

Exercice 1 Soient $\alpha, \beta > 0$. A quelle condition la série

$$\sum_{n\geq 1} \frac{\ln(1+\frac{1}{n^{\beta}})^{\alpha}}{n^{\alpha}}$$

est-elle convergente?

Exercice 2 On s'intéresse aux suites de terme général

$$u_n = \frac{1}{n^{\alpha} \ln(n)^{\beta}}$$

pour $\alpha, \beta > 0$ et on veut déterminer quand la série

$$\sum_{n\geq 2} u_n$$

converge.

- 1. Donner, sans démonstration, le résultat si $\beta = 0$.
- 2. Justifier que $\sum u_n$ est une série à termes positifs.
- 3. Soit $\alpha > 1$. Montrer qu'à partir d'un certain rang, $u_n \leq \frac{1}{n^{\alpha}}$. En déduire que si $\alpha > 1$, alors la série converge.
- 4. Soit $\alpha < 1$. Montrer que $0 < \frac{1+\alpha}{2} < 1$. Montrer que $\frac{1}{n^{\frac{\alpha+1}{2}}} = o(u_n)$. En déduire que la série diverge.
- 5. Dans cette dernière question, on étudie le cas $\alpha = 1$.
 - a) Donner une primitive de

$$f: x \mapsto \frac{1}{x \ln(x)^{\beta}}.$$

On mettra f(x) sous la forme $u'(x)u(x)^{-\beta}$. (Attention au cas $\beta = 1$).

- b) Montrer que f est décroissante sur $]1, +\infty[$
- c) En déduire que pour tout $k \ge 3$,

$$\int_k^{k+1} f(x) dx \leq u_k \leq \int_{k-1}^k f(x) dx.$$

d) En déduire que

$$\int_{3}^{n+1} f(x) dx \le \sum_{k=3}^{n} u_k \le \int_{2}^{n} f(x) dx.$$

e) En utilisant la primitive trouvée question a), montrer que la série converge si et seulement si $\beta > 1$. On traitera séparément les cas $\beta < 1$, $\beta = 1$, $\beta > 1$.

Exercice 3 On dit qu'une fonction C^{∞} définie sur un intervalle I est convexe si pour tout $x \in I$, $f''(x) \ge 0$.

- 1. Montrer que exp est convexe.
- 2. Soit f une fonction convexe et $x_0 \in I$. Donner l'équation de la tangente à la courbe représentative de f. A l'aide d'une formule de Taylor, montrer que la courbe de f est toujours au dessus de cette tangente.
- 3. Montrer que pour tout $x \in \mathbf{R}$, $e^x \ge 1 + x$.

Exercice 4 Soient X et Y deux variables aléatoires indépendantes suivant la même loi géométrique de paramètre $p \in]0,1[$. On définit pour tout $\omega \in \Omega$, la matrice

$$M(\Omega) = \begin{pmatrix} X(\omega) & Y(\omega) \\ Y(\omega) & X(\omega) \end{pmatrix}$$

- 1. Montrer que M est inversible si et seulement si $X \neq Y$.
- 2. Justifier que $P(X = Y) = \sum_{k=1}^{+\infty} P([X = k] \cap [Y = k])$.
- 3. En déduire la probabilité que la matrice soit inversible.

Exercice 5

- On dispose initialement d'une urne U₀ contenant 1 boule blanche et 2 boules rouges.
- Pour tout n ∈ N, on remplit ensuite l'urne U_{n+1} avec 3 boules de la façon suivante. On effectue 3 tirages avec remise dans l'urne U_n, et pour chaque boule rouge (respectivement blanche) tirée, on place une nouvelle boule rouge (respectivement blanche) dans l'urne U_{n+1}. Pour tout n ∈ N, on note Y_n le nombre de boules blanches dans l'urne U_n. En particulier Y₀ = 1.
- 1. Identifier la loi de la variable aléatoire Y₁.
- 2. Soit $n \in \mathbb{N}$, et $k \in \{0, 1, 2, 3\}$. Déterminer la loi de Y_{n+1} sous la probabilité conditionnelle $P_{[Y_n=k]}$, c'est-à-dire calculer, pour tout $j \in \{0, 1, 2, 3\}$: $P_{[Y_n=k]}(Y_{n+1}=j)$.
- 3. Écrire une fonction Python prenant en argument un entier $n \in \mathbb{N}^*$ et simulant les variables aléatoires Y_1, \dots, Y_n . La fonction renverra le résultat sous la forme d'une liste $[Y_0, Y_1, \dots, Y_n]$

4. a) Soit $n \in \mathbb{N}$. Justifier que tout $k \in \{0, 1, 2, 3\}$,

$$\sum_{i=0}^{3} P_{[Y_n=k]}(Y_{n+1}=j) = k.$$

- b) En déduire que $E[Y_{n+1}] = E[Y_n]$.
- c) En déduire l'expression de $E[Y_n]$ pour tout $n \in \mathbb{N}$.

Pour tout $n \in \mathbb{N}$, on note $a_n = P(Y_n = 0)$, $b_n = P(Y_n = 1)$, $cn = P(Y_n = 2)$, et $d_n = P(Y_n = 3)$.

- 5. Montrer que pour tout $n \in \mathbb{N}$, $b_{n+1} + c_{n+1} = \frac{2}{3}(b_n + c_n)$.
- 6. En déduire la convergence et la limite des suites (b_n) et (c_n) .
- 7. Montrer que la suite (a_n) et la suite (d_n) sont croissantes. Montrer qu'elles convergent.
- 8. A l'aide de la question 4, montrer que (d_n) converge vers 1/3. Quelle est la limite de la suite (a_n) ? Interpréter le résultat.
- 9. On note T le numéro de la première urne ne contenant que des boules rouges ou que des boules blanches.
 - a) Pour tout $n \in \mathbb{N}$, calculer P(T > n).
 - b) En déduire la loi de T et son espérance.

Exercice 6 Dans tout l'exercice, n est un entier fixé dans \mathbb{N}^* . On dispose de trois urnes :

- l'urne n°1 contient deux boules rouges et trois boules bleues;
- l'urne n° 2 contient une boule rouge et aucune boule bleue;
- l'urne *n*°3 contient une boule bleue et aucune boule rouge.

On réalise l'expérience suivante : on choisit au hasard l'une des trois urnes puis, sans plus changer d'urne, on y effectue *n* tirages successifs avec remise d'une boule.

- Pour i ∈ [1;3], on note U_i l'événement : «l'urne choisie pour effectuer les tirages est l'urne n° i».
- Pour $k \in [1; n]$, on note R_k l'événement : «le résultat du k-ième tirage est une boule rouge».
- 1. Soit $k \in [1; n]$.
 - a) Donner les probabilités conditionnelles $\mathbf{P}_{\mathrm{U}_1}(\mathrm{R}_k)$, $\mathbf{P}_{\mathrm{U}_2}(\mathrm{R}_k)$ et $\mathbf{P}_{\mathrm{U}_3}(\mathrm{R}_k)$. En déduire que $\mathbf{P}(\mathrm{R}_k) = \frac{7}{15}$.
 - b) Si l'on a tiré une boule rouge au k-ième tirage, quelle est la probabilité que l'urne choisie pour effectuer les tirages est l'urne $n^{\circ}2$?
- 2. a) Déterminer, en justifiant la réponse, les valeurs de :

$$\mathbf{P}_{\mathrm{U}_1}\left(\bigcap_{k=1}^n\mathrm{R}_k\right)$$
, $\mathbf{P}_{\mathrm{U}_2}\left(\bigcap_{k=1}^n\mathrm{R}_k\right)$, $\mathbf{P}_{\mathrm{U}_3}\left(\bigcap_{k=1}^n\mathrm{R}_k\right)$.

- b) En déduire que : $\mathbf{P}(\bigcap_{k=1}^n \mathbf{R}_k) = \frac{1}{3}(\frac{2}{5})^n + \frac{1}{3}$. c) Montrer que les événements \mathbf{R}_1 et \mathbf{R}_2 ne sont pas indépendants.
- d) Pour $k \in [2, n]$, montrer que: $\mathbf{P}_{R_1 \cap R_2 \cap \dots \cap R_{k-1}}(R_k) = \frac{1 + \left(\frac{2}{5}\right)^k}{1 + \left(\frac{2}{5}\right)^{k-1}}$.
- 3. Pour $k \in [1; n]$, on note A_k l'événement : «une boule bleue apparaît pour la première fois au tirage numéro k».

On note également A l'événement : «aucune boule bleue n'apparaît lors des n tirages».

- a) Calculer $P(A_1)$.
- b) Soit $k \in [2, n]$. Exprimer A_k en fonction des événements R_k . En déduire la valeur de $P(A_k)$ en fonction de $k \ge 2$.
- c) Expliciter l'événement ^CA et l'exprimer à l'aide des événements $(A_k)_{1 \le k \le n}$. Calculer alors la probabilité de l'événement A. Quel résultat obtenu précédemment retrouve-t-on?