TD 19 - Relations de comparaisons

Exercice 1 En identifiant quel terme est négligeable, donner des équivalents des suites suivantes en $+\infty$.

1.
$$u_n = n^3 + n!$$
,

2.
$$v_n = \ln(n^2) + \sqrt{n}$$
,

2.
$$v_n = \ln(n^2) + \sqrt{n}$$
, 3. $w_n = \frac{1}{\ln(n)} + \frac{1}{\sqrt{\ln(n+1)}}$.

Exercice 2 Les équivalents suivants sont-ils vrais?

1.
$$ln(10n) \sim ln(n)$$

2.
$$\sqrt{n+\sqrt{n}} \sim \sqrt{n}$$
.
3. $\ln(n) \sim \ln(n+1)$

3.
$$\ln(n) \sim \ln(n+1)$$

4.
$$e^{n+2} \sim e^n$$

5.
$$n^2 \sim n^2 + n$$

6. $e^n \sim e^{n^2}$

6.
$$e^n \sim e^{n^2}$$

Exercice 3 Déterminer les équivalents des suites suivantes.

1.
$$u_n = \frac{n^2 \ln(n) + n^3}{n^4}$$

1.
$$u_n = \frac{n^2 \ln(n) + n^3}{n^4}$$

2. $v_n = \frac{1}{n-1} + \frac{1}{n+1}$
3. $w_n = \sin(\frac{1}{n^3 + n^2})$

3.
$$w_n = \sin(\frac{n}{n^3 + n^2})$$

4.
$$x_n = \frac{\sin(n^{\alpha}e^{-2n})}{1-\cos(n^{\beta}e^{-n})}$$
 avec $\alpha, \beta > 0$.
5. $y_n = \arctan((1+1/n)^3 - 1)$.
6. $z_n = \ln(n^5)(e^{n+5})$.

5.
$$y_n = \arctan((1+1/n)^3 - 1)$$
.

6.
$$z_n = \ln(n^5)(e^{n+5})$$

Exercice 4 Donner des équivalents de

$$S_n = \sum_{k=0}^n k$$
, $C_n = \sum_{k=0}^n k^2$, $G_n = \sum_{k=0}^n q^k$ en fonction de $q \in \mathbf{R}$.

Exercice 5 Soit (u_n) une suite définie par

$$u_0 = 1 \text{ et } \forall n \in \mathbb{N}, u_{n+1} = \ln(1 + u_n).$$

Après avoir montré que u_n tend vers 0, montrer que $u_{n+1} \sim u_n$.

Exercice 6 Déterminer

$$\lim_{x \to 0} \frac{\sin(4x)}{\tan(2x)} \text{ et } \lim_{x \to 0} \frac{\ln(1+x^2) + x}{x\sqrt{x} + x^3}.$$

Exercice 7 En utilisant les sommes de Riemann, donner un équivalent de

$$u_n = \sum_{k=0}^n k^{\alpha}$$

où $\alpha > 0$ est un réel fixé.

Exercice 8 Déterminer les limites suivantes.

1.
$$\lim_{x\to 0} \exp(\frac{1}{x^2}) - \exp(\frac{1}{x^2+10})$$

2. $\lim_{x\to +\infty} \left(1 + \frac{1}{x}\right)^x$
3. $\lim_{x\to \frac{\pi}{2}} + \frac{\ln(\sin(x))}{\sqrt{\frac{\pi}{2}-x}}$

2.
$$\lim_{x\to+\infty} \left(1+\frac{1}{x}\right)^x$$

3.
$$\lim_{x \to \frac{\pi}{2}^+} \frac{\ln(\sin(x))}{\sqrt{\frac{\pi}{2} - x}}$$

4.
$$\lim_{x\to 0} \frac{\ln(\cos(x))}{1-\cos(x)}$$

5.
$$\lim_{x\to 1^-} \ln(1-x)\cos(\frac{\pi x}{2})$$

4.
$$\lim_{x\to 0} \frac{\ln(\cos(x))}{1-\cos(x)}$$

5. $\lim_{x\to 1^{-}} \ln(1-x)\cos(\frac{\pi x}{2})$
6. $\lim_{x\to 0^{+}} \frac{2\sqrt{x}xe^{-x\sqrt{x}}}{1+x^{3}}$.

Exercice 9

1. Soit $n \in \mathbb{N}$, montrer que pour tout $k \in \{0, \dots, n-2\}$, $0 \le \frac{k!}{n!} \le \frac{1}{n(n-1)}$.

2. En déduire que $\sum_{k=0}^{n} k! \sim n!$.

Exercice 10 Donner les équivalents suivants :

1.
$$\ln(1 + \frac{1}{x})$$
 en $+\infty$

3.
$$\log(\cos(\tan(e^{-1/x})))$$
 en 0^+
4. $\exp(\cos(x)) - 1$ en $\frac{\pi}{2}$.

1.
$$\ln(1 + \frac{1}{x})$$
 en $+\infty$,
2. $\sin(\pi + \frac{1}{x^2})$ en $+\infty$

4.
$$\exp(\cos(x)) - 1 \text{ en } \frac{\pi}{2}$$
.

Exercice 11 Soit a > 0. Soit (u_n) et (v_n) deux suites définies par

$$u_n = \exp a n$$
 et $v_n = n!$.

On souhaite démontrer que $u_n = o(v_n)$.

1. Montrer qu'à partir d'un certain rang n_0 , $\frac{u_{n+1}}{u_n} \le \frac{1}{2} \frac{v_{n+1}}{v_n}$. 2. En utilisant un produit télescopique, montrer que

$$\forall n\in\mathbb{N}, u_n\leq v_n\frac{u_{n_0}}{v_{n_0}}\left(\frac{1}{2}\right)^{n-n_0}.$$

3. Conclure.