TD 20 - Séries numériques

Exercice 1 On considère la série de terme général $u_n = A$ l'aide du calcul des sommes partielles par télescopage, dé- $\frac{1}{4n^2-1}$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, $u_n = \frac{1}{2} \left(\frac{1}{2n-1} \frac{1}{2n+1} \right)$.
- 2. En déduire une expression de la somme partielle de la série.
- 3. La série converge-t-elle?

Exercice 2 Soit $u_n = \frac{(-1)^{n-1}}{n}$.

- 1. Montrer que pour tout $n \in \mathbb{N}^*$, $u_n = \int_0^1 (-x)^{n-1}$.
- 2. En déduire que

$$\forall n \in \mathbb{N} \sum_{k=1}^{n} \frac{(-1)^k}{k} = \int_0^1 \frac{1 + (-x)^n}{1 + x} dx.$$

3. Montrer que la série converge vers ln(2). On utilisera que $\ln(2) = \int_0^1 \frac{1}{1+x} dx/$

Exercice 3 On considère la série de terme général

$$u_n = \ln\left(\frac{n^2}{n^2 - 1}\right).$$

terminer la nature et éventuellement la somme de la série.

Exercice 4 Montrer que la série

$$\sum_{n \ge 2} \frac{4}{3^n \ln(n)}$$
 converge.

Exercice 5 Reconnaître les séries suivantes et calculer leurs sommes.

1.
$$\sum_{n\geqslant 1}\frac{n}{2^n}$$

3.
$$\sum_{n \ge 1} \frac{1}{(-3)^n n!}$$

2.
$$\sum_{n \ge 0} \frac{3^{n+1}}{n!}$$

1.
$$\sum_{n \ge 1} \frac{n}{2^n}$$
 3. $\sum_{n \ge 1} \frac{1}{(-3)^n n!}$ 2. $\sum_{n \ge 0} \frac{3^{n+1}}{n!}$ 4. $\sum_{n \ge 0} \frac{n(n-1)(-1)^n}{2^{2n}}$.

Exercice 6 On souhaite prouver que la série harmonique diverge. On note $H_n = \sum_{k=1}^n \frac{1}{k}$ sa somme partielle.

1. Montrer que pour tout $n \in \mathbb{N}^*$,

$$\mathrm{H}_{2n}-\mathrm{H}_n \geq \frac{1}{2}.$$

2. En déduire que $\lim H_n = +\infty$.

Exercice 7

- 1. Montrer que pour tout $n \in \mathbb{N}$, $\sin(\frac{1}{n}) \ge \frac{2}{\pi n}$
- 2. En déduire que la

$$\sum \sin(\frac{1}{n})$$
 diverge.

Exercice 8 Dans chacun des cas, la série de terme général u_n est-elle convergente?

1.
$$u_n = \frac{n^2 - 4^3}{-4n^4 + 12}$$

1.
$$u_n = \frac{n^2 - 4^3}{-4n^4 + 12}$$
 5. $u_n = (1 - \cos(\frac{1}{\sqrt{n}}))(e^{\frac{1}{n}} - 1)$
2. $u_n = \frac{\ln(n)n}{4^n}$ 6. $u_n = \cos(\frac{1}{n!})$
3. $u_n = \frac{5}{2+n!}$ 7. $u_n = \frac{\ln(5^n)}{n^2}$
4. $u_n = \frac{1}{\sqrt{n}}\sin(\frac{1}{\sqrt{n}})$ 8. $u_n = \cos(\frac{\pi}{2} + \frac{1}{n^2})$
9. $u_n = e^{-n}n^{1000}$.

2.
$$u_n = \frac{\ln(n)n}{4^n}$$

6.
$$u_n = \cos(\frac{1}{n!})$$

3.
$$u_n = \frac{5}{2+n!}$$

7.
$$u_n = \frac{\ln(5^n)}{n^2}$$

$$4. \ u_n = \frac{1}{\sqrt{n}} \sin(\frac{1}{\sqrt{n}})$$

8.
$$u_n = \cos(\frac{\pi}{2} + \frac{1}{n^2})$$

9.
$$u_n = e^{-n} n^{1000}$$
.

Exercice 9 Les séries de terme général u_n sont-elles convergentes? On raisonnera sur les paramètres $\alpha, \beta > 0$.

1.
$$u_n = \sin(\frac{1}{n^{\alpha}})(1 - \cos(\frac{1}{n^{2\alpha}}))$$

4.
$$u_n = \frac{\sin(n^{\alpha}e^{-n})}{(1-\frac{1}{8})^5}$$

$$2. u_n = \sin(\cos(n^{\beta}e^{-n}))$$

$$5. \ u_n = \frac{\alpha^n}{1 + \alpha^{2n}}$$

3.
$$u_n = e^{\frac{1}{\sqrt{n^{\alpha}}}} \arctan(\frac{1}{n^{\alpha}})$$

1.
$$u_n = \sin(\frac{1}{n^{\alpha}})(1 - \cos(\frac{1}{n^{2\alpha}})$$
 4. $u_n = \frac{\sin(n^{\alpha}e^{-n})}{(1 - \frac{1}{n^{\beta}})^5}$
2. $u_n = \sin(n^{\alpha}e^{-n})(1 - \cos(n^{\beta}e^{-n}))$ 5. $u_n = \frac{\alpha^n}{1 + \alpha^{2n}}$
3. $u_n = e^{\frac{1}{\sqrt{n^{\alpha}}}} \arctan(\frac{1}{n^{\alpha}})$ 6. $u_n = (\sqrt{n+1} - \sqrt{n})^{\alpha}$.

Exercice 10 On dit qu'une série de terme général est alter**née** si u_n change de signe à chaque fois. On suppose dans cet exercice que

- |*u_n*| est décroissante
- $\lim u_n = 0$.

On note S_n la suite des sommes partielles.

- 1. Montrer que (S_{2n}) et (S_{2n+1}) sont adjacentes.
- 2. Que peut on conclure?
- 3. Quelle est la nature de la série de terme général

$$u_n = \sin(n\pi + \frac{1}{n}).$$

Exercice 11 Soit u_n la suite définie par $u_0 \in]0,1[$ et pour tout $n \in \mathbb{N}$,

$$u_{n+1} = u_n - u_n^2$$
.

- 1. Montrer que (u_n) converge et déterminer sa limite.
- 2. Montrer que $\sum u_n^2$ converge et calculer la somme.
- 3. Quelle est la nature de la série

$$\sum_{n>0} \ln(u_{n+1}) - \ln(u_n).$$

Exercice 12 Soit $\sum u_n$ une série à termes positifs. On suppose qu'il existe $\ell \in \mathbf{R}$ tel que

$$\lim \frac{u_{n+1}}{u_n} = \ell.$$

1. On suppose que $\ell > 1$. Montrer qu'à partir d'un certain rang,

$$u_{n+1} > \frac{\ell+1}{2}u_n.$$

En déduire que la série diverge.

2. On suppose que $\ell < 1$. Montrer qu'à partir d'un certain rang,

$$u_{n+1} < \frac{\ell+1}{2}u_n.$$

En déduire que la série converge.

3. Si $\ell=1$, trouver un exemple dans lequel la série diverge et dans lequel la série converge.