TD 24 - Compléments sur les SEV

Exercice 1 Soit $E = \mathbb{R}^4$ et

$$F = \left\{ (x, y, z, t) \in \mathbf{R}^4, \begin{cases} x + y + z + t = 0 \\ x - t = 0 \end{cases} \right\}.$$

- 1. Montrer que F est un sous-espace vectoriel de E et en déterminer une base et la dimension.
- 2. Montrer que Vect((1,0,0,0),(0,1,0,0)) est un supplémentaire de F dans E.
- 3. Proposer un autre supplémentaire possible.

Exercice 2 Soit $M \in M_n(\mathbb{R})$ telle que $M^2 = M$. Soient $E = \{MX, X \in M_{n,1}(\mathbb{R})\}$ et $F = \{X \in M_{n,1}(\mathbb{R}), MX = 0_{M_{n,1}(\mathbb{R})}\}$.

- 1. Montrer que $E \cap F = \{0_{M_{n,1}(\mathbb{R})}\}.$
- 2. Montrer que pour tout $X \in M_{n,1}(\mathbb{R})$,

$$X - MX \in F$$

puis que

$$M_{n,1}(\mathbb{R}) = E + F.$$

3. Conclure que $M_n(\mathbb{R}) = E \oplus F$.

Exercice 3 Soit $E = \{P \in \mathbb{R}_n[x], P(0) = 0.\}$. Montrer que E est un sous-espace vectoriel de E et en donner un supplémentaire.

Exercice 4 Dans cet exercice $E = M_n(\mathbb{R})$. Soit $F = \{M \in M_n(\mathbb{R}), Tr(M) = 0.\}$

- 1. Vérifier que F est un espace vectoriel.
- 2. Montrer que dim(F) = $n^2 1$.
- 3. Trouver un supplémentaire de F dans E.

Exercice 5 Soit E l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} . On note F l'ensemble des fonctions impaires et G l'ensemble des fonctions paires.

- 1. Vérifier que G et F sont des espaces vectoriels.
- 2. Déterminer $F \cap G$.
- 3. Soit $f \in E$. Soit $g : x \mapsto \frac{f(x) + f(-x)}{2}$. Vérifier que $g \in G$ et $f g \in F$.
- 4. En déduire que $E = F \oplus G$.