CHAPITRE 4

Sommes et produits

SOMMES

1.1.

Généralités

L'écriture de certaines sommes peut-être fastidieuse. Par exemple si on se donne une suite $(u_n)_n$, et qu'on veut calculer $u_0 + u_1 + \cdots + u_n$, l'écriture n'est pas très claire. On introduit une nouvelle notation pour résoudre ce problème.

Notation (Signe Σ)

La quantité $u_0 + u_1 + \dots + u_n$ se note

$$\sum_{k=0}^{n} u_k = u_0 + u_1 + \dots + u_n.$$

Proposition 1 Propriétés du signe Σ

Soient u et v deux suites, et $\lambda \in \mathbf{R}$. Le signe Somme vérifie les propriétés suivantes:

- Linéarité : $\sum_{k=0}^{n} (u_k + v_k) = \sum_{k=0}^{n} u_k + \sum_{k=0}^{n} v_k$, Homogénéité : $\sum_{k=0}^{n} \lambda u_k = \lambda \sum_{k=0}^{n} u_k$,
- Relation de Chasles : si m, n, p sont des entiers avec m alors

$$\sum_{k=m}^{n} u_k = \sum_{k=m}^{p} u_k + \sum_{k=p+1}^{n} u_k.$$

• L'indice de sommation est muet :

$$\sum_{k=m}^{n} u_k = \sum_{\ell=m}^{n} u_{\ell}.$$

Remarque 1.1 — On peut aussi sommer sur un ensemble qui ne contient pas forcément les entiers consécutifs. Par exemple, si P est l'ensemble des nombres entiers pairs compris entre 0 et 100, on peut sommer sur P. On écrit alors $\sum_{k \in P} u_k$.

Thomas Cometx

Si on a une suite donnée par une expression différentes selon si k est pair ou impair, une "relation de Chasles" intéressante est

$$\sum_{k=0}^n u_k = \sum_{0 \leqslant k \leqslant n \text{ pair}} u_k + \sum_{0 \leqslant k \leqslant n \text{ impair}} u_k.$$

Remarque 1.2 — Il n'y a pas de souci à sommer sur des entiers négatifs (si une famille de nombre est indexée par des entiers de signe quelconque). Par exemple, que vaut

$$\sum_{k=-n}^{n} \sin(n)?.$$

Remarque 1.3 — Par convention, si n < m,

$$\sum_{k=m}^{n} u_k = 0.$$

Exemple 1—

- 1. $\sum_{k=0}^{n} 1 = 1 + \dots + 1(n+1 \text{ fois } = n+1,$
- 2. si u_n est la suite qui vaut 1 entre 0 et 100 et 2 après, on a

$$\sum_{k=0}^{200} u_k = \sum_{k=0}^{100} u_k + \sum_{k=101}^{200} u_k$$
$$= \sum_{k=0}^{100} 1 + \sum_{k=101}^{200} 2$$
$$= 101 + 2 \sum_{k=101}^{200} 1$$
$$= 101 + 2 \times 100 = 301.$$

1.2. Sommes de références

Certaines sommes de références ont des formules explicites à connaître.

Sommes arithmétiques.

Théorème 1 | Somme des termes consécutifs d'une suite arithmétique

Si (u_n) est une suite arithmétique et $m \le n$ sont des entiers alors

$$\sum_{k=m}^{n} u_k = (n-m+1) \frac{u_m + u_n}{2} = \text{(nombre de termes)} \times \text{(moyenne des extrêmes)}.$$

En particulier, si l'expression de la suite est $u_n = u_0 + nr$ on obtient

$$\sum_{k=m}^n u_k = (n-m+1) \times \frac{2u_0 + (n+m)r}{2}.$$

Remarque 1.4 — Si la somme commence à m = 0,

$$\sum_{k=0}^{n} u_k = (n+1) \times \frac{2u_0 + nr}{2}.$$

On en déduit la valeur de la somme des premiers entiers naturels :

Théorème 2 | Somme des entiers _

Soit $n \in \mathbb{N}$.

$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2}.$$

Exemple 2 — Pour calculer une somme arithmétique, on a désormais deux méthodes. Considérons par exemple la suite d'expression $u_n = 2n - 3$. On souhaite calculer

$$\sum_{k=0}^{n} u_k.$$

1. Méthode 1 (avec la formule). On obtient

$$\sum_{k=0}^{n} u_k = (n+1) \frac{u_0 + u_n}{2}$$
$$= (n+1) \frac{-3 - 3 + 2n}{2}$$
$$= (n+1)(-3+n).$$

2. Méthode 2 (calcul direct).

$$\sum_{k=0}^{n} (2k-3) = 2 \sum_{k=0}^{n} k - \sum_{k=0}^{n} 3$$

$$= 2 \frac{n(n+1)}{2} - (n+1) \times 3 \text{ en utilisant la formule de la somme des entiers}$$

$$= n(n+1) - 3(n+1)$$

$$= (n+1)(-3+n).$$

Sommes géométriques.

Théorème 3 | Somme des termes consécutifs d'une suite géométrique

Soit $u_n = u_0 \times q^n$ une suite géométrique de raison q et $m \le N$ deux entiers alors 1. Si $q \ne 1$,

$$\sum_{n=m}^{N} u_n = u_n \times \frac{1 - q^{N-M+1}}{1 - q} = (\text{premier terme}) \times \frac{1 - q^{(\text{nombre de termes})}}{1 - q}.$$

2. Si q = 1,

$$\sum_{n=m}^{N} u_n = (N - m + 1)u_0$$
 (on somme une suite constante!).

Corollaire 1 -

En particulier et sous les hypothèses précédentes, en prenant m=0, 1. si $q \neq 1$,

$$\sum_{n=0}^{N} u_n = u_0 \times \frac{1 - q^{N+1}}{1 - q}.$$

2. si
$$q = 1$$
, $\sum_{n=0}^{N} u_n = (N+1)u_0$.

Corollaire 2 ——

Soit $n \in \mathbb{N}$ et $q \in \mathbb{R}$ différent de 1,

$$\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}.$$

Si
$$q = 1, \sum_{k=0}^{n} q^k = \sum_{k=0}^{n} 1 = n + 1.$$

Autres sommes à savoir démontrer.

On a vu les sommes précédentes en exercice. Elles se démontrent par récurrence.

Théorème 4

Soit $n \in \mathbb{N}$,

1. Somme des carrés.

$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

2. Somme des cubes.

$$\sum_{k=0}^{n} k^{3} = \left(\sum_{k=0}^{n} k\right)^{2} = \left(\frac{n(n+1)}{2}\right)^{2}.$$

1.3. Changement d'indice

Pour se ramener à une somme de référence ou même seulement simplifier une somme, on peut changer l'indice de sommation. Il s'agit de remplacer l'indice muet k par un autre k' qui s'exprime en fonction de k. Attention, il faut changer alors l'expression dans le terme général de la somme mais aussi dans les bornes de sommation.

Proposition 2 | Changement d'indice par translation

Si la somme est $\sum_{k=m}^{n} u_k$, On pose k' = k + p. La somme devient alors

$$\sum_{k'=m+p}^{n+p} u_{k-p}.$$

Exemple 3 — *Calcul de* $\sum_{k=4}^{12} k$ Pour sa ramener à une somme de référence, on fait le changement d'indice k' = k - 4. On obtient

$$\sum_{k'=0}^{8} (k'+4) = \sum_{k'=0}^{8} k' + \sum_{k'=0}^{8} 4$$
$$= \frac{8(8+1)}{2} + 4 \times 9$$
$$= 72.$$

Proposition 3 | Changement d'indice par symétrie —

Si la somme est $\sum_{k=m}^{n} u_k$, On pose k' = n - p. La somme devient alors

$$\sum_{k'=0}^{n-p} u_{n-k'}.$$

Remarque 1.5 — Contrairement à la méthode précédente, ce changement d'indice change l'ordre des termes.

Exemple 4 — En symétrisant l'indice, remontrer que $\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$.

1.4. Somme télescopique

Une somme $\sum_{k=m}^{n} u_k$ est dite télescopique si on peut écrire u_n sous la forme $u_n = v_{n+1} - v_n$. Alors on peut écrire

$$\sum_{k=m}^{n} u_k = \sum_{k=m}^{n} v_{k+1} - v_k$$

$$= \sum_{k=m}^{n} v_{k+1} - \sum_{k=m}^{n} v_k$$

$$= \sum_{k=m+1}^{n+1} v_{k+1} - \sum_{k=m}^{n} v_k \text{ par changement d'indice dans la première somme}$$

$$= v_{n+1} - v_m \text{ par relation de Chasles.}$$

Exemple 5 — *Calcul de* $\sum_{k=1}^{n} \frac{1}{k(k+1)}$. On remarque que $\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$. Dès lors,

$$\sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n \frac{1}{k} - \frac{1}{k+1} = 1 - \frac{1}{n+1}.$$

Exemple 6 — Calcul de $\sum_{k=1}^{n} \ln(1+\frac{1}{n})$ à l'aide d'une somme télescopique.

PRODUITS

Définition 1 | **Signe** \prod _

Soit (u_n) une suite de nombres réels et m < n deux entiers naturels, alors définit la produit

$$\prod_{k=m}^{n} u_k = u_m \times u_{m+1} \times \dots \times u_n.$$

Proposition 4 | Propriétés du signe ∏ —

Soient u et v deux suites, et $\lambda \in \mathbf{R}$. Le signe Produit vérifie les propriétés suivantes:

- $\begin{array}{ll} \bullet & \prod_{k=0}^n u_k v_k = \left(\prod_{k=0}^n u_k\right) \times \left(\prod_{k=0}^n v_k\right), \\ \bullet & \prod_{k=0}^n \lambda u_k = \lambda^{n+1} \prod_{k=0}^n u_k, \end{array}$
- Télescopage : si m, n, p sont des entiers avec m alors

$$\prod_{k=m}^n u_k = \prod_{k=m}^p u_k \prod_{k=p+1}^n u_k.$$

• L'indice est muet:

$$\prod_{k=m}^n u_k = \prod_{p=m}^n u_p.$$

Remarque 2.1 — Le changement d'indice fonctionne comme avec les sommes. Avec le télescopage c'est un moyen habile de calculer certains produits. Par exemple, le produit

$$\prod_{k=1}^{n} \frac{2k+1}{2k-1}$$
 est ce qu'on appelle un produit téléscopique.

En effet.

$$\begin{split} \prod_{k=1}^{n} \frac{2k+1}{2k-1} &= \frac{\prod_{k=1}^{n} 2k+1}{\prod_{k=1}^{n} 2k-1} \\ &= \frac{\prod_{k=1}^{n} 2k+1}{\prod_{k'=0}^{n-1} 2k'+1} \text{ en faisant un changement } k' = k-1 \text{ dans le deuxième produit} \\ &= \frac{(2n+1)(\prod_{k=1}^{n-1} 2k+1)}{(-1)(\prod_{k=1}^{n-1} 2k+1)} \\ &= \frac{2n+1}{-1} = -2n-1. \end{split}$$

Remarque 2.2 — Si (u_n) est une suite à terme positifs, on peut transformer le produit en somme en utilisant le logarithme népérien :

$$\ln\left(\prod_{k=0}^{n} u_k\right) = \sum_{k=0}^{n} \ln(u_k).$$

Définition 2 | Factorielle

Soit $n \in \mathbb{N}$, la factorielle de n, aussi prononcée "factorielle n" est le nombre donné par

$$n! = \prod_{k=1}^{n} k.$$

Exemple 7 — $5! = 1 \times 2 \times 3 \times 4 \times 5 = 120$.

Remarque 2.3 — 0! est un produit sur un ensemble vide : par convention on a donc 0! = 1. Cela permet de donner un autre définition de la factorielle, par récurrence cette fois : on définit 0! = 1 et les autres par une relation de récurrence

$$(n+1)! = (n+1) \times n!$$
.

Remarque 2.4 — En dénombrement et en probabilités, on aura besoin de l'interprétation combinatoire de la factorielle. Si on a un ensemble à n éléments (par exemple n bandes dessinées), n! est le nombre de façon de les ranger différemment dans une même pile. En effet, on choisit d'abord la BD qui ira en dessous : on a n choix, puis celle d'après (on a n-1 choix), etc. Cela donne

$$n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1 = n!$$
 choix.

TRIANGLE DE PASCAL ET FORMULE DU BINÔME

3.1. **Coefficients binomiaux**

Théorème 5 | Coefficient binomial _____

Soit $n \in \mathbb{N}$ et k un entier compris entre 0 et n, on définit le coefficient binomial "k parmi n" par

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Remarque 3.1— $\binom{n}{k}$ est le nombre de façons de choisir k éléments dans un ensemble à n éléments. On vérifie naturellement que

- $\binom{n}{0} = 1$, $\binom{n}{1} = n$, $\binom{n}{2} = \frac{n(n-1)}{2}$, $\binom{n}{n} = 1$.

Certaine formules reliant les coefficients binomiaux sont à connaître :

_ Proposition 5 | Symétrie _

Soit $n \in \mathbb{N}$ et $k \in [0, n]$, alors

$$\binom{n}{k} = \binom{n}{n-k}.$$

Proposition 6 —

Pour tout $n \in \mathbb{N}$ et $k \in [0, n]$,

$$k\binom{n}{k} = n\binom{n-1}{k-1}.$$

Théorème 6 Formule de Pascal

Pour tout $n \in \mathbb{N}$ et $k \in [0, n]$,

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

Cette formule a une illustration bien connue, le triangle de Pascal, qui permet de calculer de proche en proche les coefficients binomiaux.

9/ 13

Thomas Cometx

n k	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

3.2. Formule du binôme

Théorème 7 | Formule du binôme (de Newton)

Pour tout réels $(x, y) \in \mathbb{R}^2$ et tout entier $n \in \mathbb{N}$,

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

Preuve La preuve se fait par récurrence sur $n \in \mathbb{N}$. On définit $P(n) = \forall (x,y) \in \mathbb{R}^2, (x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$ ".

Initialisation. On prouve $\mathcal{P}(0)$. On a d'une part $(x + y)^0 = 1$ et d'autre par

$$\sum_{k=0}^{0} {0 \choose k} x^k y^{0-k} = {0 \choose 0} = 1.$$

Hérédité. Supposons $\mathcal{P}(n)$ et montrons $\mathcal{P}(n+1)$. On écrit $(x+y)^{n+1} = (x+y)(x+y)^n$ et on remplace $(x+y)^n$ par son expression obtenue en supposons $\mathcal{P}(n)$.

On a

$$(x+y)(x+y)^{n} = (x+y) \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n-k}$$

$$= \sum_{k=0}^{n} \binom{n}{k} x^{k+1} y^{n-k} + \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n+1-k}$$

$$= \sum_{k'=1}^{n+1} \binom{n}{k'-1} x^{k'} y^{n+1-k'} + \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n+1-k}$$

en réalisant le changement de variable k' = k + 1 dans la première somme. On regroupe alors les termes communs aux deux sommes en laissant à part les

autres. On obtient

$$(x+y)(x+y)^{n} = \sum_{k=1}^{n} {n \choose k-1} + {n \choose k} x^{k} y^{n+1-k} + y^{n+1} + x^{n+1}$$

$$= x^{n+1} + \sum_{k=1}^{n} {n+1 \choose k} x^{k} y^{n+1-k} + y^{n+1} \text{ à l'aide de la formule de Pascal}$$

$$= \sum_{k=0}^{n+1} {n+1 \choose k} x^{k} y^{n+1-k}.$$

Corollaire 3

Soit $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$$

Preuve

$$\sum_{k=0}^{n} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k} 1^{k} 1^{n-k} = (1+1)^{n} = 2^{n}.$$

Proposition 7 | Identité remarquable -

Pour tout $(x, y) \in \mathbf{R}^2$,

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^{k}.$$

Remarque 3.2 — Dans des situations de dénombrement, on a déjà dit que $\binom{n}{k}$ est le nombre de parties à k éléments dans un ensemble à n éléments. Ces éléments **ne sont pas ordonnées**. Si on veut le nombre de parties ordonnées on regarde le nombre d'arrangements

$$A_n^k = \frac{n!}{(n-k)!}.$$

Par exemple, le nombre de tiercés (en prenant l'ordre) dans une course à vingt chevaux est

$$A_{20}^3 = \frac{20!}{17!},$$

alors que le nombre de podiums (sans prendre compte l'ordre) est

$$\binom{20}{3} = \frac{20!}{3!17!}.$$

QUELQUES MOTS SUR LES SOMMES DOUBLES

On peut avoir une famille de nombre indexées par deux indices i et j entiers. On la note alors $(u_{i,j})_{i,j\in X}$ où X est un sous-ensemble de \mathbb{N}^2 . Il y a deux types de domaines sur lesquels ont peut sommer à connaitre.

Sur un domaine rectangulaire. C'est un domaine de la forme $[n_1, n_2] \times [m_1, m_2]$. Les bornes de ces domaines sont indépendantes et le cas le plus simple est $0 \le i, j \le i$ m c'est à dire que les deux indices i et j sont compris respectivement entre 0 et n et 0 et m. On note par exemple

$$\sum_{\substack{0 \le i \le n \\ 0 \le j \le m}} u_{i,j}.$$

Pour calculer ces sommes, on les réécrit d'une des deux façons suivantes :

$$\sum_{\substack{0 \le i \le n \\ 0 \le i \le n}} u_{i,j} = \sum_{i=0}^{n} \left(\sum_{j=0}^{m} u_{i,j} \right) = \sum_{j=0}^{m} \left(\sum_{i=0}^{n} u_{i,j} \right).$$

On essaie alors de calculer la valeur de la somme entre parenthèse, puis de sommer le résultat sur l'autre indice.

Remarque 4.1 — Selon les cas, il sera plus intéressant de sommer d'abord sur i ou d'abord sur j.

Remarque 4.2 — Les parenthèses ne sont pas obligatoires et on peut noter

$$\sum_{i=0}^n \sum_{j=0}^m u_{i,j}.$$

Remarque 4.3 — Il faut bien penser que si on somme sur i, le j se comporte comme une constante. Par exemple

$$\sum_{i=1}^{n} \sum_{j=1}^{m} ij = \sum_{i=1}^{n} i \sum_{j=1}^{m} j = \sum_{i=1}^{n} i \frac{n(n+1)}{2} = \frac{n(n+1)}{2} \sum_{i=1}^{n} i = \left(\frac{n(n+1)}{2}\right)^{2}.$$

Remarque 4.4 — On déduit de la remarque précédente que si la suite $u_{i,j}$ peut s'écrire $u_{i,j} = v_i w_i$ (on dit que la suite est à variables séparables), alors

$$\sum_{i=0}^{n} \sum_{j=0}^{m} u_{i,j} = \left(\sum_{i=0}^{n} v_i\right) \left(\sum_{j=0}^{m} w_j\right)$$

Exemple 8 —

$$\sum_{0 \leqslant i,j \leqslant n} 2^{i+j} = \sum_{i=1}^{n} \sum_{j=1}^{n} 2^{i+j}$$

$$= \sum_{0=1}^{n} \sum_{0=1}^{n} 2^{i} 2^{j}$$

$$= \sum_{0=1}^{n} 2^{i} \sum_{0=1}^{n} 2^{j}$$

$$= \frac{2^{n+1} - 1}{2 - 1} \frac{2^{n+1} - 1}{2 - 1}$$

$$= (2^{n+1} - 1)^{2}.$$

Exemple 9 — Calcul de

$$\sum_{1 \leq i,j \leq n} \max(i,j)$$

Sur un domaine triangulaire. On peut sommer sur un domaines d'entiers de la forme $1 \le i \le j \le n$. La somme se note alors

$$\sum_{1 \leqslant i \leqslant jn} u_{i,j}.$$

Pour calculer ces sommes, on utilise la relation

$$\sum_{i=1}^{n} \sum_{j=1}^{i} u_{i,j} = \sum_{j=1}^{n} \sum_{i=1}^{j} u_{i,j}.$$

Remarque 4.5 — On peut aussi sommer sur un domaine $1 \le i < j \le n$, on obtient alors

$$\sum_{1 \leq i < j \leq n} u_{i,j} = \sum_{i=1}^{n} \sum_{j=1}^{i-1} u_{i,j} = \sum_{j=1}^{n} \sum_{i=1}^{j-1} u_{i,j}.$$