ÉTUDES DE SUITE

suivantes:

1.
$$u_n = n + \frac{1}{2^n}$$
, $\ln(n)^{-2}$ 4. $t_n = 5n^2 - 4n^3$. 1. la suite u définie par $u_n = n^2 + 1$, 2. la suite v définie par $v_n = \frac{n-1}{n+2}$, 3. la suite u définie par $v_n = \frac{n-1}{n+2}$, 3. la suite v définie par $v_n = \cos(n)$

Exercice 2 Déterminer les limites (si elles existent) des suites suivantes.

1.
$$u_n = \left(\frac{5}{2}\right)^n \times n^2$$
, 3. $u_n = \sqrt{n}(-2)^n$, 5. $u_n = \frac{\left(\frac{5}{7}\right)^n - 5}{5n^2}$, 2. $u_n = \left(\frac{2}{5}\right)^n \times n^2$, 4. $u_n = \frac{1}{\sqrt{n}} \frac{1}{100000000^n}$, 6. $u_n = \frac{-5n + 10}{0.5^n}$.

Exercice 3 Déterminer les limites (si elles existent) des suites suivantes.

1.
$$u_n = -n^4 + n^3 - 4$$
. $u_n = \frac{-5n^7 - 1}{3n^2 + 12n}$, 7. $u_n = \frac{2(-1)^{n^3 + 1}}{n^2 + 12n}$, 8. $u_n = \frac{5n^2 - 1}{3n^2 + 12n}$, 9. $u_n = \frac{n!}{3n^3}$, 9. $u_n = \frac{5n^2 - 1}{3n^3 + 12n}$, 8. $u_n = \frac{\ln(n)^3 - \ln(n)}{-\ln(n)^2 + 1}$, 9. $u_n = 3n + 1 + \frac{-3}{n^2 + 1}$.

Exercice 1 Déterminer, si elles existent, les limites des suites Exercice 4 Les suites suivantes sont elles minorées, majorées, bornées?

- 3. la suite w définie par $w_n = \cos(n) n$.

Exercice 5 Les suites suivantes sont-elles monotones, strictement monotones? Préciser la nature de la monotonie.

- 1. la suite *u* définie par $u_n = n^2 + 1$,
- 2. la suite v définie par $v_n = (-1)^n$,
- 3. la suite w définie par $w_0 = 1$ et $w_{n+1} = \frac{w_n}{2}$,
- 4. la suite x définie par $x_0 = -1$ et $x_{n+1} = \frac{x_n}{2}$,
- 5. la suite *y* définie par $y_n = \lfloor \frac{n}{2} \rfloor$,
- 6. la suite z définie par $z_n = \frac{n-1}{n+2}$

Exercice 6 Soit (u_n) la suite définie par $u_0 = 1$ et pour tout entier n,

$$u_{n+1} = \sqrt{2 + u_n}.$$

1. Montrer que pour tout $n \in \mathbb{N}$,

$$0 \le u_n \le 2$$
.

- 2. Montrer que u_n est croissante.
- 3. Que peut-on conclure?

Exercice 7 Soit (u_n) la suite définie par $u_0 \in \mathbf{R}$ et pour tout entier n,

$$u_{n+1} = u_n - u_n^2.$$

Étudier la suite (monotonie, bornes, convergence).

Exercice 8 Soit (u_n) la suite définie par $u_0 \in \mathbf{R}$ et pour tout entier n,

$$u_{n+1} = u_n + 2n + 3.$$

- 1. Montrer que la suite (u_n) est croissante.
- 2. Est-elle majorée, minorée?
- 3. Conjecturer et démontrer une formule pour u_n .

SUITES DE RÉFÉRENCE

Exercice 9 Trouver une expression explicites des suites suivantes :

- 1. $u_0 = 12$ et $\forall n \in \mathbb{N}, u_{n+1} = 3u_n 2$,
- 2. $u_0 = -2$ et $\forall n \in \mathbb{N}, u_{n+1} = -3u_n + 1$,
- 3. $u_0 = -1$ et $\forall n \in \mathbb{N}, u_{n+1} + 2u_n = 1$,
- 4. $u_0 = 3$ et $\forall n \in \mathbb{N}, u_n = 3u_{n+1} 2$,

Exercice 10 On souhaite étudier la suite (u_n) définie par $u_0 \in \mathbf{R}$ et pour tout entier $n \in \mathbf{N}$,

$$u_{n+1} = \frac{2}{1+u_n}.$$

- 1. Si $u_0 = -2$, conjecturer et démontrer le comportement de la suite.
- 2. Si $u_0 = 3$, montrer que pour tout entier n, $0 \le u_n \le 3$.
- 3. On définit une suite (v_n) par

$$v_n = \frac{u_n - 1}{u_n + 2}.$$

Montrer que v_n et géométrique et en déduire une expression de v_n en fonction de n.

4. En déduire une expression de u_n .

Exercice 11 En se ramenant à une suite récurrente linéaire d'ordre 2, trouver une formule explicite pour la suite définie par $u_0 = 1$, $u_2 = e$ et pour tout $n \in \mathbb{N}$, $u_{n+2} = \sqrt{u_{n+1}u_n}$.

Exercice 12 Montrer que les suites définies par

$$u_n = \sum_{k=1}^{n} \frac{1}{k}$$
 et $v_n = u_n + \frac{1}{n}$

sont convergentes vers la même limite.

Exercice 13 Soit a et b deux réels vérifiant 0 < a < n. Soient (u_n) et (v_n) des suites définies par $u_0 = a \in \mathbb{R}$, $v_0 = b \in \mathbb{R}$ et

$$\forall n \in \mathbb{N}, u_{n+1} = \frac{u_n + v_n}{2} \text{ et } v_n = \sqrt{u_{n+1}v_n}.$$

Montrer que les suites u et v convergent vers la même limite.

Exercice 14 Soit H_n la suite définie pour $n \ge 1$ par

$$H_n = \sum_{k=1}^n \frac{1}{k}.$$

- 1. Montrer que soit H_n converge, soit H_n tend vers $+\infty$,
- 2. Montrer que quelque soit $n \ge 1$, $H_{2n} H_n \ge \frac{1}{2}$,
- 3. En déduire que H_n tend vers $+\infty$.

Exercice 15 On considère la suite (u_n) définie par $u_0 = 1$ et, pour $n \ge 0$, $u_{n+1} = \frac{u_n}{u_n+1}$.

- 1. Soit f la fonction définie sur $]-1; +\infty$ par $f(x) = \frac{x}{x+1}$ Montrer que si $x \in [0,1]$, $a\ell ors f(x) \in [0,1]$. 2. Montrer que pour tout $n \ge 0$, $un \in [0,1]$.
- 2. Étudier le signe de $f(x) x \operatorname{sur}] 1; +\infty[$.
- 3. Montrer que (u_n) est décroissante.
- 4. En déduire que (u_n) .
- 5. Déterminer la limite de (u_n) .

Exercice 16 Soit a > 0. On considère la suite $(u_n)_{n \ge 1}$ définie par

$$u_1 = \sqrt{a}, u_2 = \sqrt{a + \sqrt{a}}, u_3 = \sqrt{a + \sqrt{a + \sqrt{a}}}, \dots$$

Montrer que (u_n) est convergente.

Exercice 17

- 1. Montrer que l'équation $x^3 = 1 nx$ admet une seule solution sur $[0, +\infty[$ que l'on note x_n .
- 2. Montrer que la suite $(x_n)_{n\in\mathbb{N}}$ est strictement décroissante.

- 3. Montrer que la suite $(x_n)_{n\in\mathbb{N}}$ est convergente et calculer sa limite ℓ .
- 4. **(Pour plus tard)** Déterminer un équivalent de $x_n \ell$ au voisinage de $+\infty$.

Exercice 18 Étude de la suite définie par

$$u_n = e^{u_n} - 1, \qquad u_0 \in \mathbb{R}.$$

Exercice 19 Étude de la suite définie par

$$u_n = u_n + \frac{1}{\sqrt{u_n}}, \qquad u_0 = 1.$$

Exercice 20 Soit une suite u croissante telle que u_{2n} converge. Montrer que u_n converge.