# CHAPITRE 14

## Variables aléatoires réelles finies

Dans tout ce chapitre,  $(\Omega, P)$  est un espace probabilisé fini.

## 1.

### **DÉFINITIONS**

#### Définition 1 | Variable aléatoire réelle (finie) =

Une variable aléatoire réelle est une application de  $\Omega$  dans **R** 

**Remarque** 1.1 — Il n'est pas forcément utile de préciser  $\Omega$  pour l'étude d'une variable aléatoire. Cependant, préciser  $X(\Omega) = \{X(x), x \in \Omega\}$  (autrement dit, l'ensemble image de la variable aléatoire) est fondamental.

**Remarque 1.2** — Comme  $\Omega$  est fini, l'ensemble  $X(\Omega)$  l'est aussi.

Exemple 1 — Reprenons l'exemple du lancer du dès. L'univers est l'ensemble d'entiers [1,6]. On joue à un jeu où on gagne 10 points si on fait un nombre pair, ou le nombre inscrit sur le dès si on fait un nombre impaire. La fonction qui a un lancer associe de le nombre de points est la variable aléatoire définie par

$$\begin{cases} X(n) = & 10 \text{ si } n \in \{2, 4, 6\} \\ & n \text{ si } n \in \{1, 3, 5\}. \end{cases}$$

Ici, 
$$X(\Omega) = \{1, 3, 5, 10\}.$$

**Exemple 2** — Prenons l'exemple du lancer de deux dès : l'univers est  $\Omega = [1, 6]^2$ . Une variable aléatoire sur cette expérience est l'association d'une valeur numé**rique** à tout lancer possible. Par exemple les fonctions définies sur  $\Omega$  par

- 1.  $X_1(\omega, \omega') = \omega$  (le résultat du premier lancer)
- 2.  $X_2(\omega, \omega') = \omega'$  (le résultat du deuxième lancer)
- 3.  $S(\omega, \omega') = \omega + \omega'$  (la somme des deux lancers)

sont des variables aléatoires, avec par exemple  $X_1(\Omega) = [1,6]$  ou  $S(\Omega) = [2,12]$ .



#### **Notation**

En probabilité, on s'autorise certaines notation pour décrire des événements :

- si  $I \subset X(\Omega)$ ,  $[X \in I] = \{\omega \in \Omega, X(\omega) \in I\}$  est l'image réciproque de I par X.
- si  $x \in X(\Omega)$ ,  $[X = x] = \{\omega \in \Omega, X(\omega) = x\}$  est l'ensemble des antécédents de x
- si  $x \in X(\Omega)$ ,  $[X \le x] = \{\omega \in \Omega, X(\omega) \le x\}$  est l'image réciproque de  $]-\infty,x]$
- de même on  $[X < x], [X > x], [X \ge x], [X^2 > 1] \dots$

## Définition 2 | Système complet associé à une variable aléatoire

Soit X un variable aléatoire réelle finie. Le système complet d'événements associé à X est l'ensemble des événements [X = x] pour  $x \in X(\Omega)$ .

## Définition 3 | Loi de probabilité d'une variable aléatoire

Soit X une variable aléatoire finie. La loi de X est la donnée de  $X(\Omega)$  et des valeurs P([X = x]) pour tout  $x \in X(\Omega)$ .

## Définition 4 | Image d'une variable aléatoire par une fonction

Soit X une variable aléatoire sur  $\Omega$  et g une fonction de  $X(\Omega)$  dans **R**. La variable aléatoire g(X) est la variable aléatoire sur  $\Omega$  définie par  $g(X)(\omega) = g(X(\omega))$ . Son image est  $g(X)\Omega$ ) =  $g(X(\Omega))$ .

## Proposition 1 | Loi de g(X) \_\_\_\_

La loi de g(X) est donnée par

$$\forall y \in g(\mathrm{X}(\Omega)), \mathrm{P}(g(\mathrm{X}) = y) = \sum_{x \in \mathrm{X}(\Omega), g(x) = y} \mathrm{P}(\mathrm{X} = x).$$

## 2.

### **ESPÉRANCE ET VARIANCE**

L'espérance et a variances sont des indicateurs qui permettent décrire une variable aléatoires: l'espérance correspond à la moyenne et la variance correspond à la tendance de que la VA a à s'éloigner de sa moyenne.

## Définition 5 | Espérance

L'espérance d'une variable aléatoire finie réelle X est

$$E(X) = \sum_{x \in X(\Omega)} x P(X = x).$$

Thomas Cometx

Elle est aussi donnée par

$$E(X) = \sum_{x \in \Omega} X(\omega) P(\{\omega\}).$$

## Proposition 2 | Linéarité de l'espérance \_\_\_\_

Soit X, Y deux variables aléatoires réelles et a, b deux réels. Alors on a

$$E(aX + bY) = aE(X) + bE(Y).$$

### \_ Proposition 3 | Croissance de l'espérance \_

Si X et Y sont deux variables aléatoires vérifiant  $X \le Y$  (c'est à dire que pour tout  $\omega \in \Omega, X(\omega) \leq Y(\omega)$ . Alors on a

$$E(X) \leq E(Y)$$
.

## Proposition 4 -

Une VA positive d'espérance nulle est une VA constante égale à zéro.

### \_ Théorème 1 | Théorème de transfert \_

Soit  $g: X(\Omega) \to \mathbf{R}$  une fonction; On a

$$E(g(X)) = \sum_{x \in X(\Omega)} g(x)P(X = x)$$

## **Remarque 2.1** — Théorème admis.

#### Définition 6 | Variance d'une variable aléatoire réelle finie

La variance d'une variable aléatoire réelle finie est la quantité positive donnée par

$$V(X) = E((X - E(X))^2).$$

#### **Définition 7** | **Écart-type** \_

L'écart-type d'une VA réelle finie est la quantité

$$\sigma(X) = \sqrt{V(X)}.$$

#### Théorème 2 -

Une variable aléatoire de variance égale à 0 est une variable aléatoire constante.

Thomas Cometx

**Théorème 3** | Formule de Huygens-Koenig

Soit X une VA réelle finie,

$$V(X) = E(X^2) - E(X)^2$$
.

**Remarque 2.2** — Cela implique que pour toute VA X,  $E(X)^2 \le E(X^2)$ .

Proposition 5 ——

Soit X une VA réelle finie, et  $(a, b) \in \mathbb{R}^2$ . On a

$$V(aX + b) = a^2V(X).$$

**Remarque 2.3** — On ne sait pas encore calculer V(X + Y) de façon automatique.

Définition 8 | VA centrée réduite \_

Une VA est dite **centrée réduite** si E(X) = 0 et V(X) = 1.

**Exemple 3** — Si X est une VA réelle finie, alors la VA  $\frac{X-E(X)}{\sigma(X)}$  est centrée réduite.

**LOIS USUELLES** 3.

> 3.1. Variable aléatoire certaine

Définition 9 | Variable aléatoire certaine ——

Une variable aléatoire X est dite certaine si  $X(\Omega)$  est un singleton $\{x\}$ . Dans cas la P(X = x) = 1.

Proposition 6 —

Soit X la variable aléatoire certaine égale à x, alors

- 1. E(X) = x,
- 2. V(X) = 0.

## 3.2. Loi de Bernoulli

## Définition 10 | Loi de Bernoulli \_\_\_\_

Une variable aléatoire X suit une loi de Bernoulli de paramètre p si  $X(\Omega) = \{0, 1\}$  et

$$P(X = 1) = p$$
,  $P(X = 0) = 1 - p$ .

Cette loi apparait dans de très nombreuses situations : en fait dans n'importe quel jeu où on peut gagner ou perdre il suffit de définir la variable aléatoire qui vaut 1 si on a gagné et 0 si on a perdu. *p* est alors la probabilité de succès ou de victoire.

## Σ

#### Vocabulaire

Le réel  $p \in [0, 1]$  s'appelle la **probabilité de succès**.



#### **Notation**

Si X suit une loi de Bernoulli de paramètre p on note  $X \hookrightarrow \mathcal{B}(p)$ .

#### Proposition 7 –

Soit  $X \hookrightarrow \mathcal{B}(p)$  une variable aléatoire de Bernoulli. On a

- 1. E(X) = p
- 2. V(x) = p(1-p).

#### ■ Définition 11 | Loi de Rademacher =

Une variable aléatoire suit une loi de Rademacher si  $X(\Omega) = \{-1, 1\}$  et  $P(X = -1) = P(X = 1) = \frac{1}{2}$ .

**Remarque 3.1** — Si X suit une loi de Bernoulli de paramètre  $\frac{1}{2}$ , alors Y = 2X – 1 suit une loi de Rademacher. On déduit rapidement que E(Y) = 0 et V(Y) = 1.

#### 3.3. Loi binomiale

#### **Définition 12** | **Loi binomiale** \_

Soit  $n \in \mathbb{N}$  et  $p \in [0, 1]$ . Une variable aléatoire X suit une loi binomiale de paramètres si  $X(\Omega) = [1, n]$  et

$$\forall k \in [0, n], P(X = k) = \binom{n}{k} p^k (1 - p)^k.$$



#### **Notation**

On note  $X \hookrightarrow \mathcal{B}(n,p)$ .

**Remarque 3.2** — On a bien

$$\sum_{k=0}^{n} P(X = k) = \sum_{k=0}^{n} {n \choose k} p^{k} (1-p)^{k} = (p + (1-p))^{n} = 1$$

ce qui prouve que c'est bien une loi de probabilité.

#### - Théorème 4 -

Soit  $X_1, \dots, X_n$  des variables aléatoires indépendantes qui suivent toutes une loi de Bernoulli de paramètre p. Alors

$$X = \sum_{k=1}^{n} X_k$$

suit une loi binomiale de paramètres n, p.

**Remarque 3.3** — Cela justifie que la loi binomiale est la loi qui compte les succès :

- chacune des variables aléatoires X<sub>i</sub> correspond à la réalisation d'une expérience de Bernoulli qui a une probabilité p de succès,
- pour avoir k succès : il faut choisir les numéros des expériences qui ont réussi ce qui donne le coefficient binomial. On multiplie ensuite par la probabilité d'obtenir la configuration choisie, c'est (par indépendance)  $p^k$  (réussite des expériences choisies) ×  $(1-p)^k$  (echec des expériences non choisies) ..

**Exemple 4** — On lance un même dès équilibré n fois. Quelle est la loi du nombre de 6 obtenus? Quelle est la loi du nombre de nombres pairs obtenus?

#### Proposition 8 –

Soit X une variable aléatoire qui suit une loi binomiale n, p, alors

- 1. E(X) = np,
- 2. V(X) = np(1-p).

#### 3.4. Loi uniforme

## **Définition 13** | **Loi uniforme** –

soit n un entier strictement positif. Une variable aléatoire suit une loi uniforme  $\operatorname{sur} [1, n] \operatorname{si} X(\Omega) = [1, n] \text{ et pour tout } k \in [1, n], P(X = k) = \frac{1}{n}.$ 

#### Notation

On note  $X \hookrightarrow \mathcal{U}([1, n])$ .

### Proposition 9 —

Si X  $\hookrightarrow \mathcal{U}(\llbracket 1, n \rrbracket)$  alors

1. 
$$E(X) = \frac{n+1}{2}$$
,

1. 
$$E(X) = \frac{n+1}{2}$$
,  
2.  $V(X) = \frac{n^2-1}{12}$ .

#### Définition 14 -

Soient  $(a,b) \in \mathbb{Z}^2$  avec a < b. Une variable aléatoire suit une loi uniforme sur  $[\![a,b]\!]$  si  $X(\Omega) = [\![a,b]\!]$  et pour tout  $k \in [\![a,b]\!]$ ,  $P(X=k) = \frac{1}{n}$ . (où n=b-a+1= $\operatorname{card}[a,b]$ ).

#### $_{-}$ Proposition $10\,$ $_{-}$

1. 
$$E(X) = \frac{a+b}{2}$$

Si X  $\hookrightarrow \mathcal{U}([a, b])$  alors 1.  $E(X) = \frac{a+b}{2}$ , 2.  $V(X) = \frac{n^2-1}{12}$  avec n = b - a + 1 = card[a, b].