TD 11 - Continuité des fonctions

THÉORÈME DES VALEURS

INTERMÉDIAIRES

Exercice 1

- 1. Soit $P(x) = x^3 + ax^2 + bx + c$ un polynôme du troisième degré. Montrer que P(x) = 0 admet au moins une solution.
- 2. Soit $n \in \mathbb{N}^*$ et d > 0 un réel positif. Montrer que l'équation $x^n - d$ admet au moins une solution.

Exercice 2 Montrer que l'équation $x^7 - 3x^2 + 4x - 1 = 0$ admet au moins une solution dans l'intervalle]-1;1[.

Exercice 3 Soit $f:[0,1] \rightarrow [0,1]$ une fonction continue. En étudiant la fonction $g: x \mapsto f(x) - x$, montrer qu'il existe $x_0 \in$ [0,1] tel que $f(x_0) = x_0$.

Le réel x_0 est un **point fixe** de f.

Exercice 4 Soit *f* la fonction réelle définie par

$$\forall x \in \mathbf{R} : f(x) = arctan(2x) - arctan(x).$$

Pour tout $c \in \mathbb{R}$, combien a de solution(s) l'équation f(x) =

Exercice 5 Le samedi, Antonin randonne dans le massif de la Chartreuse. Il part à 14h. Il dort sur place. Le lendemain, Antonin fait le chemin du retour. Il part à 14h. Montrer qu'il existe un point de son chemin de randonnée auquel Antonin arrive à la même heure le samedi et le dimanche.

THÉORÈME DE LA BIJECTION

Exercice 6 Montrer que les fonctions suivantes réalisent une bijection d'un intervalle I sur un intervalle J à déterminer. Expliciter la bijection réciproque

1.
$$f: x \mapsto \frac{e^x - e^{-x}}{2}$$

3.
$$f: x \mapsto \ln(x^3 + 1)$$

$$2. \ f: x \mapsto \frac{e^x + e^{-x}}{2}$$

1.
$$f: x \mapsto \frac{e^x - e^{-x}}{2}$$

2. $f: x \mapsto \frac{e^x + e^{-x}}{2}$
3. $f: x \mapsto \ln(x^3 + 1)$,
4. $f: x \mapsto \sqrt{1 + \sqrt{x + 1}}$.

Exercice 7 Soit f la fonction définie sur \mathbf{R}_{\perp} par $f(x) = x^3 +$ $x^2 + x - 1$.

- 1. Dresser le tableau de variations de la fonction f.
- 2. Montrer que f réalise une bijection entre \mathbf{R}_{\perp} et un intervalle à préciser.
- 3. Montrer que, pour tout entier $n \ge 1$, l'équation f(x) = nadmet une unique solution. On appelle (u_n) cette unique solution.
- 4. Étudier les variations de la suite (u_n) . Admet-elle une limite?

BORNES ATTEINTES

Exercice 8 On se repère sur l'équateur en utilisant l'angle comme si c'était le cercle unité. On note f la fonction définie sur R qui a une abscisse sur le cercle unité associe la température en ce point.

- 1. Montrer que *f* est périodique et donner sa période.
- 2. En supposant que la température une fonction continue de l'abscisse, montrer que f admet un minimum et un maximum.
- qui ont la même température.

Exercice 9 Soient $f, g : [a, b] \to \mathbf{R}$ continues telles que $\forall \in [a, b], f(x) < g(x).$

Montrer qu'il existe a > 0 tel que

$$\forall x \in [a, b], f(x) \leq g(x) - a.$$

RETOUR SUR LES SUITES

Exercice 10 On considèere la fonction $f: \mathbf{R} \longrightarrow \mathbf{R}$ définie par

$$f(x) = \frac{x^3}{9} + \frac{2x}{3} + \frac{1}{9}$$

et on déefinit la suite $(x_n)_{n\geq 0}$ en posant $x_0=0$ et $x_{n+1}=f(x_n)$ pour $n \in \mathbb{N}$.

- 1. Montrer que l'équation $x^3 3x + 1 = 0$ possède une solution unique $\alpha \in]0, 1/2[$.
- 2. Montrer que l'équation f(x) = x est équivalente à l'équation $x^3 - 3x + 1 = 0$ et en déduire que α est l'unique solution de l'équation f(x) = x dans l'intervalle [0, 1/2].
- 3. Montrer que la fonction f est croissante sur \mathbb{R}^+ et que $f(\mathbf{R}^+) \subset \mathbf{R}^+$. En déduire que la suite (x_n) est croissante.
- 3. Montrer qu'il existe au moins deux points sur l'équateur 4. Montrer que f(1/2) < 1/2 et en déduire que $0 \le x_n < 1/2$ pour tout $n \ge 0$.
 - 5. Montrer que la suite $(x_n)_{n\geq 0}$ converge vers α .

Exercice 11 Soient a et b deux réels strictement positifs; on définit une suite (u_n) par :

$$u_0 \geqslant 0$$
 et; $u_{n+1} = \sqrt{au_n + b}$

- 1. Montrer qu'il existe une valeur de u_0 pour laquelle cette suite est stationnaire.
- 2. Montrer que si u_0 est distinct de cette valeur, (u_n) est monotone et bornée. Trouver $\lim_{n\to\infty}u_n$.