DEVOIR MAISON # 10^{-1} Commutant d'une matrice diagonalisable.

Définition 1 | Commutant d'une matrice _

Soit $A \in M_n(\mathbf{R})$, le commutant de la matrice A est l'ensemble

$$C_A = \{M \in M_n(\mathbf{R}), AM = MA\}.$$

- 1. Soit $M \in M_n(\mathbf{R})$. Montrer que $(I, M, M^2, \dots M^{n^2})$ est liée. En déduire que M admet un polynôme annulateur.
- polynome annuateur.

 2. [Commutant d'une matrice de taille 3] Dans cette question, $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.
 - a) Montrer que C_D est un espace vectoriel.
 - b) Soit $M \in M_n(\mathbf{R})$, montrer que

$$M \in C_D \iff M \text{ est diagonale.}$$

- c) En déduire une base de C_D et sa dimension.
- d) Soit P le polynôme défini par

$$\forall x \in \mathbf{R}, P(x) = (x-1)(x-2)(x-3).$$

Montrer que $P(D) = 0_3$. En déduire que (I, D, D^2, D^3) est liée.

- e) Soit $G = \text{Vect}(I, D, D^2)$. Montrer que (I, D, D^2) est libre. En déduire la dimension de G.
- f) Montrer que $G \subset C_D$ puis que $G = C_D$. (Pour démontrer l'égalité, pensez à la dimension!)
- g) Montrer que $G = \{P(D), P \in \mathbb{R}[x]\}.$
- 3. [Commutant d'une matrice diagonale à coefficients distincts] Dans cette partie $D \in M_n(\mathbf{R})$ est une matrice diagonale fixée. On note (d_1, \dots, d_n) ses coefficients diagonaux et on suppose qu'ils sont distincts deux à deux et qu'ils sont non nuls. On rappelle que

$$C_{\rm D} = \{ \mathbf{M} \in \mathbf{M}_n(\mathbf{R}), \mathbf{D}\mathbf{M} = \mathbf{M}\mathbf{D} \}.$$

- a) Montrer que C_D est un espace vectoriel.
- b) Soit $M \in M_n(\mathbf{R})$, montrer que

$$M \in C_D \iff \forall (i,j) \in [1,n], d_i M_{i,j} = d_i M_{i,j}.$$

c) En déduire que C_D est l'ensemble des matrices diagonales. Donner une base de C_D ainsi que sa dimension.

- d) Montrer que $(I, D, ..., D^n)$ est liée.
- e) En déduire que $(I, D, ..., D^{n-1})$ est une famille génératrice de $G = \text{Vect}(D^k, k \in \mathbb{N})$.
- f) Montrer que $(I, D, ..., D^{n-1})$ est libre. Indication: on montrera que si $\sum_{i=0}^{n-1} \lambda_i D^i = 0_n$ alors le polynôme $P(x) = \sum_{i=0}^{n-1} \lambda_i x^i$ admet d_1, \ldots, d_n comme racines.
- g) En déduire que $(I, D, ..., D^{n-1})$ est une base de G.
- h) Montrer que $G \subset C_D$, puis que $G = C_D$.
- 4. [Commutant d'une matrice diagonalisable] Dans cette question, $A \in M_n(\mathbf{R})$ est une matrice telle qu'il existe $P \in M_n(\mathbf{R})$ inversible telle que $P^{-1}AP = D$ est une matrice diagonale à coefficients distincts non nuls.

 - a) Montrer que $C_A = \{PNP^{-1}, N \in C_D\}$. b) En déduire que $C_A = \{Q(M), Q \in \mathbf{R}[x]\}$.
 - c) En déduire la dimension de C_A.
 - d) Montrer que $(I, A, ... A^n)$ est liée et en déduire qu'il existe $Q \in \mathbf{R}_n[x]$, $Q(A) = 0_n$.