CHAPITRE 5

Fonctions usuelles

1.

GÉNÉRALITÉS SUR LES FONCTIONS

1.1. Opérations sur les fonctions

Définition 1 | **Fonction**

Une **fonction** f, définie sur un ensemble E est l'objet mathématique qui a un nombre $x \in E$ associe une unique image f(x). On note

$$f: x \in E \rightarrow f(x)$$

ou

$$x \mapsto f(x)$$

pour dire que la fonction f associe le nombre f(x) à x.

Vocabulaire

Si y est une valeur prise par la fonction f. Alors un réel $x \in E$ tel que f(x) = y s'appelle un **antécédent de** y **par** f. A priori, un antécédent n'est pas unique : pour la fonction $x \mapsto x^2$, le réel 1 a deux antécédents 1 et -1.

Attention

On ne parle pas de la "fonction f(x)". C'est se tromper dans la nature des objets. En effet f est une fonction alors que f(x) est un nombre!

Définition 2 | **Domaine d'une fonction** _

L'ensemble des réels pour lesquels la fonction est définie s'appelle le domaine de la fonction. Pour une fonction f on le note souvent D_f .

Remarque 1.1 — Si la fonction est définie par une formule, il est intéressant de trouver le plus grand ensemble possible sur lequel la fonction peut être définie.

Exemple 1—

1. La fonction peut être définie par une formule. Par exemple sur $\mathbb R$ on définit la fonction

$$f: x \mapsto f(x) = e^x - x^2$$
.

On aurait aussi pu la définir sur tout domaine plus petit que \mathbb{R} .

Une fonction peut être définie avec des formules différentes sur différentes parties de \mathbb{R} , par disjonction de cas. Par exemple on peut écrire

$$x \mapsto g(x) = \begin{cases} x^2 & \text{si } x \ge 0 \\ 0 & \text{si } x < 0. \end{cases}$$

2. Une fonction peut être définie sur un ensemble fini auquel cas donner les valeurs en chaque nombre suffit. Par exemple la fonction h représentée par le tableau

X	0	1	2	1000
h(x)	5	-1	12	0

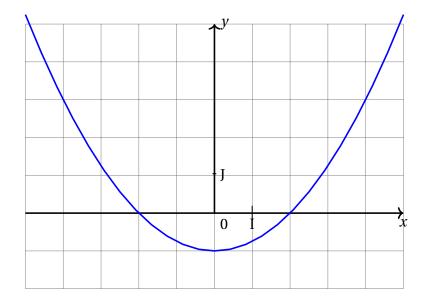
est définie sur $\{0, 1, 2, 1000\}$ par h(0) = 5, h(1) = -1, h(2) = 12 et h(1000) = 0.

Remarque 1.2 — Les fonctions définies sur ℕ sont les suites réelles.

Définition 3 | Courbe représentative

Soit f une fonction définie sur un domaine D_f . La courbe représentative de f, notée C_f est l'ensemble des points (x, f(x)) pour $x \in D_f$, représentés dans un repère (O; I; J) (en général orthonormé) du plan.

Exemple 2 —



On peut par exemple lire ici f(2) = 0 ou f(4) = 3.

Remarque 1.3 — Une fonction peut être définie par son graphe. On retrouve alors les images des points par lecture graphique.

Remarque 1.4 — La courbe représentative s'appelle aussi le graphe de f.

Définition 4 | **Opérations sur les fonctions**

Soient f, g deux fonctions définies **sur un même ensemble de départ** E et $\lambda \in \mathbb{R}$.

- 1. f + g est la somme des fonctions f et g. C'est la fonction définie sur E par (f+g)(x) = f(x) + g(x),
- 2. Cas particulier du cas précédent, $(f + \lambda)$ est la fonction définie sur E par $(f + \lambda)$ $\lambda)(x) = f(x) + \lambda,$
- 3. λf est la fonction définie sur E par $(\lambda f)(x) = \lambda f(x)$,
- 4. fg est le produit des fonctions f et g. C'est une fonction définie sur E par $(fg)(x) = f(x) \times g(x),$
- 5. Si g ne s'annule pas sur E, $\frac{f}{g}$ est le quotient de f par g. C'est la fonction définie $\operatorname{par} \frac{f}{g}(x) = \frac{f(x)}{g(x)}.$

Remarque 1.5 — Toutes ces définitions permettent aussi de définir f^n pour $n \in \mathbb{N}$.

Exemple 3 — Donner un ensemble de définition pour

$$f: x \mapsto \frac{\ln(x)}{x^2 - 1}.$$

Définition 5 | Fonctions composées

Soit f une fonction définie sur un ensemble E et g une fonction définie sur un ensemble F. Si f est à valeurs dans F (c'est dire que $\forall x \in E, f(x) \in F$, on peut définir la fonction composée de f par g sur E :

$$\forall x \in E, (g \circ f)(x) = g(f(x)).$$

Exemple 4 — Prenons $f = \exp \operatorname{et} x \mapsto g(x) = x^2$. Alors $f \circ g \operatorname{et} g \circ f$ sont définies sur ℝ avec

- $f \circ g(x) = f(g(x)) = \exp(g(x)) = \exp(x^2)$, $g \circ f(x) = g(f(x)) = f(x)^2 = \exp(x)^2 = \exp(2x)$.

X

Attention

Les exemples précédents montrent que $f \circ g \neq g \circ f$ (sauf cas particulier). La composition de fonction n'est pas commutative!

Pire, l'une peut-être définie et pas l'autre. Considérons par exemple les fonctions $x \mapsto f(x) = -x^2$ et $x \mapsto g(x) = \ln(x)$. $g \circ f$ n'existe pas!

Proposition 1 | Associativité de la composition =

Si $f : E \to F$, $g : F \to G$, $h : G \to H$ sont des fonctions alors On $(h \circ g) \circ f = h \circ (g \circ f)$. On peut noter sans ambiguïté $h \circ g \circ f$.

Remarque 1.6 — Cette propriété nous sert car on peut calculer des compositions comme $f \circ g \circ h$ dans n'importe quel sens : on peut commencer par le calcul de $f \circ g$ ou celui de $g \circ h$. Quel choix ferait-on pour le calcul de $\exp \circ \ln \circ \sqrt{\cdot}$.

1.2. Fonctions bornées, fonctions monotones

Dans cette petite partie, les définitions sont analogues à celle que l'on avait sur les suites.

Définition 6 | Fonctions bornées

Soit f une fonction réelle définie sur I. On dit que f est :

- 1. **minorée** s'il existe $m \in \mathbb{R}$ tel que pour tout $x \in I$, $f(x) \ge m$,
- 2. **majorée** s'il existe $M \in \mathbb{R}$ tel que pour tout $x \in I$, $f(x) \leq m$,
- 3. **bornée** si elle est majorée et minorée.

Remarque 1.7 — L'ensemble des images des éléments de D_f par f s'appelle **l'image** de D_f . On note cet ensemble $f(D_f)$ et formellement il est défini par

$$f(\mathbf{D}_f) = \{f(x), x \in \mathbf{D}_f\}.$$

La notation se généralise aux sous-ensembles de D_f . Ainsi si $A \subset D_f$ on note

$$f(A) = \{f(x), x \in A\}.$$

Cet ensemble s'appelle l'image (directe) de A par f.

Σ

Notation

Si f est majorée, alors l'ensemble $f(D_f)$ est une partie majorée de \mathbb{R} . Il admet donc une borne supérieure. On note souvent

$$\sup_{x \in D_f} f(x) \text{ ou } \sup f.$$

On aura alors

$$\forall x \in \mathcal{D}_f, f(x) \leq \sup_{x \in \mathcal{D}_f} f(x).$$

De même, si f est minorée alors l'ensemble $f(D_f)$ est une partie minorée de \mathbb{R} . Il admet donc une borne inférieure. On note souvent

$$\inf_{x \in D_f} f(x)$$
 ou $\inf f$.

On aura alors

$$\forall x \in \mathcal{D}_f, f(x) \geq \inf_{x \in \mathcal{D}_f} f(x).$$

- Proposition 2 -

Une fonction f est bornée si et seulement si |f| est majorée.

Définition 7 | Minimum, maximum

Soit f une fonction de D_f dans \mathbb{R} . On dit que :

1. f admet un minimum si

$$\exists x_0 \in D_f, \forall x \in D_f, f(x) \ge f(x_0).$$

Dans ce cas là, $f(x_0)$ est le minimum de f et il est souvent noté

$$\min_{x \in \mathrm{D}_f} f(x).$$

2. f admet un maximum si

$$\exists x_0 \in \mathrm{D}_f, \forall x \in \mathrm{D}_f, f(x) \leq f(x_0).$$

Dans ce cas là, $f(x_0)$ est le maximum de f et il est souvent noté

$$_{x\in \mathrm{D}_{f}}f(x).$$

Remarque 1.8 — Une fonction f admet un maximum si et seulement elle est majorée et sup f admet un antécédent.

Définition 8 | Fonctions monotones

Soit f une fonction réelle définie sur I. On dit que f est :

- 1. **croissante** (sur I) si pour tout a et b dans I tel que $a \le b$, on a $f(a) \le f(b)$,
- 2. **décroissante** (sur I) si pour tout a et b dans I tel que $a \le b$, on a $f(a) \ge f(b)$,
- 3. **strictement croissante** (sur I) si pour tout a et b dans I tel que a < b, on a f(a) < f(b),
- 4. **strictement décroissante** (sur I) si pour tout a et b dans I tel que a < b, on a f(a) > f(b),
- 5. monotone (sur I) si elle est croissante ou décroissante sur I,
- 6. **strictement monotone** (sur I) si elle est strictement croissante ou strictement décroissante sur I.

1.3. Fonctions paires, impaires, périodiques

Définition 9 | Fonctions paires, fonctions impaires

Soit f une fonction définie sur un domaine $D_f \subset \mathbf{R}$ symétrique par rapport à 0: si $x \in D_f$, alors $-x \in D_f$. La fonction f est dite:

- 1. **paire** si pour tout $x \in D_f$, f(-x) = f(x),
- 2. **impaire** si pour tout $x \in D_f$, f(-x) = -f(x).

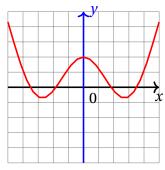
Définition 10 | Fonctions périodiques

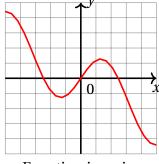
Une fonction réelle est **périodique** s'il existe un réel T > 0 tel que

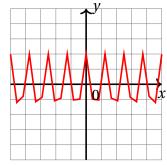
$$\forall x \in \mathbf{R}, f(x+T) = f(x).$$

$_{-}$ Proposition 3 -

- 1. La courbe représentative d'une fonction paire est symétrique par rapport à l'axe des ordonnées.
- 2. La courbe représentative d'une fonction impaire est smétrique ypar rapport à l'origine du repère.
- 3. La courbe représentative d'une fonction périodique (de période T) est invariante par translation : les fonctions $x \mapsto f(x)$ et $x \mapsto f(x T)$ ont la même courbe représentative.







Fonction paire

Fonction impaire

Fonction périodique

Remarque 1.9 — Une fonction impaire définie en 0 vérifie forcément f(0) = 0 car f(0) = -f(-0) = -f(0).

Exemple 5 —

- 1. la fonction $x \in \mathbf{R} \rightarrow x + 3x^3$ est impaire,
- 2. la fonction $x \in \mathbf{R} \mapsto e^{x^2}$ est paire
- 3. la fonction $x \in]-1,1[\mapsto \ln(1-x^2)$ est paire.

Remarque 1.10 —

- 1. On dit aussi que la fonction est T-périodique, ou qu'elle admet T comme période, ou qu'elle est de période T.
- 2. T n'est pas unique : si f est T-périodique elle est forcément aussi 2T-périodique. On essaie de prendre la période la plus petite possible!

FONCTIONS DE RÉFÉRENCES

2.1.

Rappels: exponentielle et logarithme

Définition 11 | Exponentielle _

La fonction exponentielle, notée exp est l'unique fonction dérivable sur R vérifiant $\exp(0) = 1$ et $\exp' = \exp$. On note aussi $\exp(x) = e^x$.

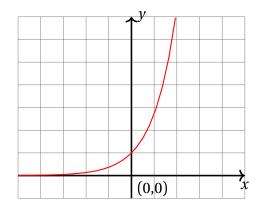
Proposition 4 —

Soient $(x, y) \in \mathbb{R}^2$, on a

- $\exp(x) > 0$,
- $\exp(x + y) = \exp(x) \exp(y)$,
- $\bullet \ \exp(-x) = \frac{1}{\exp(x)},$
- $\lim_{x\to-\infty} \exp(x) = 0$,
- $\lim_{x\to+\infty} \exp(x) = +\infty$.
- la fonction exponentielle réalise une bijection de **R** sur **R**₊*.

X	$-\infty$	0	+∞
$\exp(x)$	0 —	—1—	→ +∞

Représentation graphique.



Exemple 6 — Résoudre l'équation

$$e^{2x} - 2e^x - 1 = 0.$$

Définition 12 | Logarithme népérien _

La fonction logarithme népérien, notée ln la bijection réciproque de la fonction exponentielle. Elle réalise une bijection de $]0, +\infty[$ vers \mathbf{R} .

Remarque 2.1 — Une autre définition de la fonction logarithme est

$$\ln(x) = \int_1^{+\infty} \frac{1}{t} dt.$$

Proposition 5

- ln(1) = 0,
- ln(e) = 1,
- $\forall (x,y) \in]0, +\infty[^2, \ln(xy) = \ln(x) + \ln(y),$ $\forall x \in]0, +\infty[, \ln(\frac{1}{x}) = -\ln(x),$ $\lim_{x\to 0} \ln x = -\infty,$

- $\lim_{x\to+\infty} \ln(x) = +\infty$.

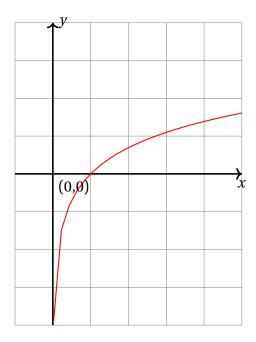
Proposition 6 ——

Le logarithme népérien est dérivable sur]0, $+\infty$ [et

$$\forall x \in]0, +\infty[, \ln'(x) = \frac{1}{x}.$$

X	0	1	e	+∞
ln(x)	$-\infty$	-0-	—l→	+∞

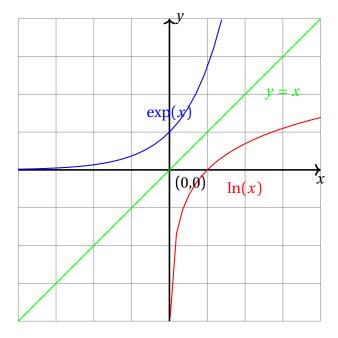
Représentation graphique.



Exemple 7 — Résoudre l'équation

$$2\ln(x) - \ln(3x) = 12.$$

Remarque 2.2 — Les fonctions ln et exp sont réciproques l'une de l'autre. Cela implique que leurs courbes représentatives sont symétriques par rapport à la diagonale d'équation y = x.



Généralisations

Définition 13 | Autres fonctions exponentielles

Si a > 0 on peut définir la fonction exponentielle de base a par

$$x \in \mathbb{R} \mapsto a^x = \exp(\ln(a)x)$$

qui définit

- 1. une bijection décroissante de \mathbb{R} sur \mathbb{R}_+^* si 0 < a < 1,
- 2. une fonction constante égale à 1 sur \mathbb{R} si a = 1,
- 3. une bijection croissante de \mathbb{R} sur \mathbb{R}_+^* si a > 1.

Dans chacun des cas on dérive la fonction $f: x \mapsto e^{\ln(a)x}$. Par dérivation des fonctions composées on obtient

$$\forall x \in \mathbf{R}, f'(x) = \ln(a)e^{\ln(a)x}.$$

Ce qui nous assure déjà que :

- 1. si $a \in]0,1[$, la fonction est strictement décroissante (car f' < 0)
- 2. si a = 1, la fonction est constante (car f' = 0)
- 3. si $a \in]1, +\infty[$, la fonction est strictement croissante (car f' > 0)

Cela traite complètement le cas 2. Pour les cas 1 et 3 on sait que la fonction réalise une bijection de son ensemble de départ sur son image que l'on détermine à partir des limites de la fonction exponentielle. Par exemple, si $a \in]0,1[$,

$$\lim_{x \to -\infty} e^{\ln(a)x} = \lim_{X \to +\infty} e^{X} = +\infty \text{ et } \lim_{x \to +\infty} e^{\ln(a)x} = 0.$$

C'est donc une bijection de **R** sur $]0, +\infty[$.

Proposition 7 —

Ces fonctions exponentielles vérifient les mêmes propriétés que l'exponentielle classique : pour tout x, y réels,

- 1. $a^x > 0$,
- $2. \ a^{x+y} = a^x a^y,$
- 3. $a^{-x} = \frac{1}{a^x}$ 4. si $p \ge 0$, $(a^x)^p = a^{px}$.

Définition 14 Autres fonctions logarithmes

Si a > 1 on peut définir la fonction logarithme de base a par

$$x \in \mathbb{R} \mapsto \ln_a(x) = \frac{\ln(x)}{\ln(a)}$$

qui définit bijection croissante $]0, +\infty[$ sur \mathbb{R} .

2.2. **Fonctions puissances**

Dans cette partie, on souhaite généraliser les fonctions de la forme $x \mapsto x^n$ que l'on connaît déjà. Cela se basera sur la formule suivante, vraie grâce aux formule de calcul sur les puissances :

$$x^n = \exp(n \ln(x)).$$

Ces fonctions sont bien définies sur R, mais pour généraliser à des fonctions de la forme $x \mapsto x^{\alpha}$, avec α un réel, on va devoir se restreindre à \mathbf{R}_{\perp}^* .

_ Définition 15 | Fonctions puissances _

Soit $\alpha \in \mathbf{R}$, on définit une **fonction puissance** sur \mathbf{R}_{+}^{*} par la formule

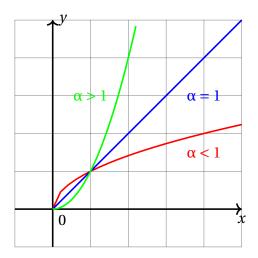
$$x \mapsto x^{\alpha} = e^{\alpha \ln(x)}$$
.

Ces fonctions ont un comportement différent en fonction du signe de α . On ne traite pas le cas $\alpha = 0$ car il est direct que cela correspond à une fonction constante égale à 1.

Cas $\alpha > 0$. Dans ce cas là, la fonction est définie sur \mathbf{R}_{+} .

Pour $\alpha > 0$, la fonction $x \mapsto x^{\alpha}$ est définie sur $[0, +\infty[$ et réalise une bijection strictement croissante.

x	0 +∞
x^{α}	0 ──────────────────────



Remarque 2.3 — Soit $\alpha > 0$, les fonctions $x \mapsto x^{\alpha}$ et $x \mapsto x^{\frac{1}{\alpha}}$ sont réciproques l'une de l'autre sur $]0, +\infty[$. Leurs courbes sont donc symétriques par rapport à l'axe d'équation y = x. C'est le cas sur la figure précédente.

Remarque 2.4 — Les tracés pour $\alpha > 1$ et $\alpha < 1$ sont vraiment différents! Un chapitré ultérieur est consacré à la notion de convexité qui expliquera cela.

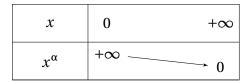
Remarque 2.5 — Pour $\alpha \ge 1$, les fonctions sont dérivables sur $[0, +\infty[$. Pour $\alpha < 1$, elles le sont uniquement sur $]0, +\infty[$. Cela se voit à la tangente verticale en 0.

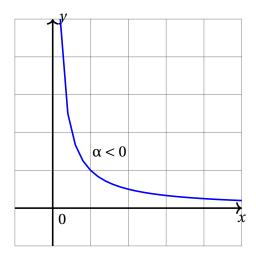
Exemple 8 — Les fonctions $x \mapsto x^n$ pour $n \in \mathbb{N}$ rentrent dans cette catégories et son particulières car elles sont définies sur R.

Exemple 9 — Soit $n \in \mathbb{N}^*$, la fonction $x \mapsto x^{\frac{1}{n}}$ est la fonction racine *n*-ième. On sait qu'elle est définie sur \mathbf{R}_+ et on a vu que dans le cas où n est impair, on peut aussi la définir sur R.

Cas $\alpha < 0$.

Pour $\alpha < 0$, la fonction $x \mapsto x^{\alpha}$ est définie sur $]0, +\infty[$ et réalise une bijection strictement décroissante de cet ensemble.

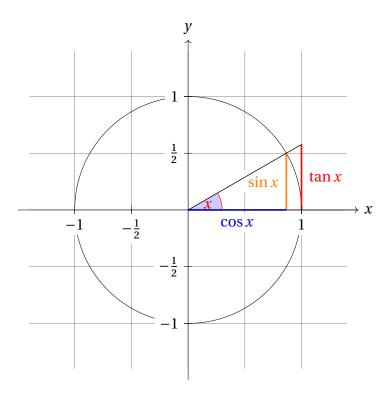




2.3. Fonctions trigonométriques

Définition 16 | **Fonctions** cos **et** sin _

Le **cosinus** d'un nombre réel x (ou d'un angle exprimé en radians), est l'abscisse du point obtenu en reportant la longueur x le long du cercle unité (en partant du points (0;1). Le sinus d'un nombre est son ordonnée. On définit des fonctions réelles **cosinus** et **sinus** qui à un réel x associent ces nombres. On les note cos et sin.



Des valeurs remarquables des fonctions cosinus et sinus sont à connaître.

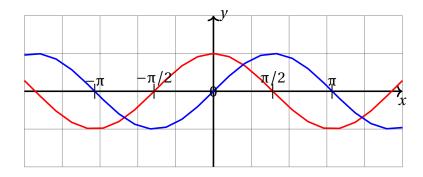
X	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
cos(x)	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
sin(x)	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Pour trouver les autres valeurs remarquables, on se réfère au cercle trigonométrique et aux égalités suivantes.

Proposition 10 ————

Pour tout réel *x*,

- $1. \cos(\pi x) = -\cos(x),$
- 2. cos(-x) = cos(x): la fonctions cos est **paire**,
- $3. \sin(\pi x) = \sin(x),$
- 4. $\sin(-x) = -\sin(x)$: la fonction sin est **impaire**.



- Proposition 11 -

Soient $(x, y) \in \mathbb{R}^2$, on a les équivalences

- $cos(x) = cos(y) \iff \exists k \in \mathbb{Z}, x = y + 2k\pi \text{ ou } \exists k \in \mathbb{Z}, x = -y + 2k\pi$,
- $\sin(x) = \sin(y) \iff x = y + 2k\pi \text{ ou } \exists k \in \mathbb{Z}, x = \pi y + 2k\pi.$

Exemple 10 — Résoudre les équations suivantes :

1.
$$\cos(x + \frac{\pi}{4}) = \frac{\sqrt{2}}{2}$$
,

2.
$$\frac{1}{2}\cos(x) + \frac{\sqrt{3}}{2}\sin(x) = 1$$
.

- Théorème 1

Pour tout réel x,

$$\cos^2(x) + \sin^2(x) = 1.$$

Proposition 12 -

Pour tous réels a et b,

- 1. $\cos(a+b) = \cos(a)\cos(b) \sin(a)\sin(b)$,
- 2. $\sin(a+b) = \cos(a)\sin(b) + \sin(a)\cos(b)$.

Corollaire 1

Pour tout réel x,

- $\cos(2x) = \cos^2(x) \sin^2(x) = 2\cos^2(x) 1 = 1 2\sin^2(x)$
- $\sin(2x) = 2\cos(x)\sin(x)$.

- Théorème 2

Les fonctions sin et cos sont dérivables sur \mathbf{R} et on a pour tout $x \in \mathbf{R}$:

- 1. $\cos'(x) = -\sin(x)$,
- 2. $\sin'(x) = \cos(x)$.

Définition 17 | **Fonction tangente** –

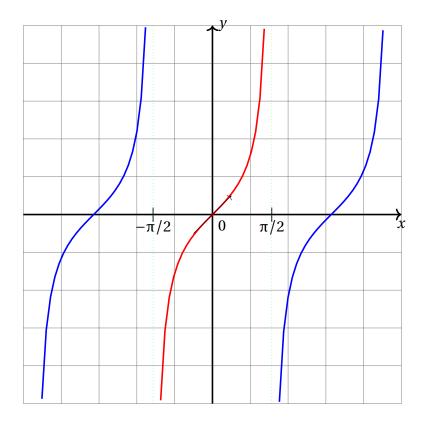
La fonction tangente, notée tan est définie sur $\mathbb{R}\setminus\{k\pi+\frac{\pi}{2},k\in\mathbb{Z}\}$ par

$$\tan(x) = \frac{\sin(x)}{\cos(x)}.$$

- Théorème 3 -

La fonction tangente est une bijection strictement croissante de] $-\frac{\pi}{2}$, $\frac{\pi}{2}$ [sur **R**.

X	$-\pi/2$	0	$\pi/2$
tan(x)	-∞ -	_0_	→ -∞



Remarque 2.6 — Le tableau des valeurs remarquables se complète comme ceci. On prêtera particulièrement attention à la valeur $tan(\frac{\pi}{4}) = 1$.

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	<u>π</u> 3	$\frac{\pi}{2}$
cos(x)	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
sin(x)	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
tan(x)	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	

Remarque 2.7 — La fonction tangente est impaire.

Définition 18 | Fonction Arctangente -

La bijection réciproque de la fonction tan s'appelle la fonction Arctangente, note arctan. Elle est définie sur **R** et réalise une bijection croissante vers $]-\frac{\pi}{2},\frac{\pi}{2}[.$

Théorème 4 —

1. La fonction tan est dérivable sur tout intervalle de la forme] $-\frac{\pi}{2}+k\pi,\frac{\pi}{2}+k\pi[$ (où $k \in \mathbb{Z}$) et

$$\forall x \in]-\frac{\pi}{2}+k\pi, \frac{\pi}{2}+k\pi[, \tan'(x)=1+\tan(x)^2=\frac{1}{\cos(x)^2}.$$

2. La fonction arctan est dérivable sur R et

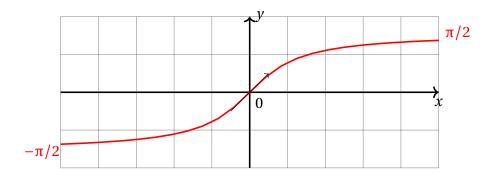
$$\forall x \in \mathbf{R}, \arctan'(x) = \frac{1}{1+x^2}.$$

Remarque 2.8 — On retiendra la formule de trigonométrie

$$\frac{1}{\cos(x)^2} = 1 + \tan(x)^2$$

pour x réel qui n'est pas de la forme $\frac{\pi}{2} + k\pi, k \in \mathbb{Z}$. On peut dresser le tableau de variations et tracer l'allure de la courbe de la fonction arctan.

x	$-\infty$	0	+∞
arctan(x)	$-\frac{\pi}{2}$	0	$\rightarrow -\frac{\pi}{2}$



Remarque 2.9 — La fonction Arctangente est impaire.

Remarque 2.10 — On retiendra la valeur remarquable $\arctan(1) = \frac{\pi}{4}$ et $\arctan'(0) = \frac{\pi}{4}$ 1.

Proposition 13 ———

- 1. La fonction **cosinus** est 2π -périodique,
- 2. La fonction **sinus** est 2π -périodique,
- 3. La fonction **tangente** est π -périodique.

Exemple 11 — *Déterminer une période de la fonction* f *définie par* $f(x) = \cos(2x) + \cos(2x)$ $\sin(3x)$.