CHAPITRE 6

1.

ENSEMBLES, PARTIES D'UN ENSEMBLE

1.1.

Généralités

Définition 1 | **Ensemble** _

On appelle **ensemble** toute collection d'objet. Si un élément x appartient à l'ensemble E, on note $x \in E$. Sinon on note $x \notin E$.

Exemple 1 — *Ensembles classiques de* \mathbb{R} L'ensemble des nombres réels se note \mathbb{R} . Il contient plusieurs sous ensembles à connaître :

- 1. N l'ensemble des entiers naturels,
- 2. \mathbb{Z} l'ensemble des entiers relatifs
- 3. \mathbb{Q} l'ensemble des nombres rationnels, c'est à dire l'ensemble des nombres qui s'écrivent $\frac{p}{q}$ avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$
- 4. $\mathbb D$ l'ensemble des nombres décimaux : c'est les nombres qui s'écrivent $\frac{n}{10^k}$ avec $n \in \mathbb Z$, $k \in \mathbb Z$.

Exemple 2 — *Ensembles finis* Les ensembles qui contiennent un nombre fini d'éléments se note $\{x_1, x_2, \dots, x_n\}$ où les x_i sont les éléments de l'ensemble. Cet ensemble contient n éléments, on dit qu'il est de cardinal n et on note

$$card({x_1, x_2, ..., x_n}) = n.$$

Exemple 3 — *Ensemble vide* L'unique ensemble qui ne contient aucun élément s'appelle l'ensemble vide. On le note \emptyset . Tout élément x vérifie alors $x \notin \emptyset$. L'ensemble vide n'est pas particulièrement intéressant à étudier, mais il sert à décrire des situations impossibles. Par exemple l'ensemble des entiers à la fois pairs et impairs est l'ensemble vide.

Tous les ensembles ne sont pas des ensembles de nombres, il existe par exemple :

- 1. les ensembles de fonctions $\mathscr{F}(\mathbb{R},\mathbb{R})$ est l'ensemble des fonctions de \mathbb{R} dans lui même.
- 2. $\mathbb{R}^{\mathbb{N}}$ est l'ensemble des suites réelles.
- 3. $\{\emptyset, \{1\}, \{2\}, \{1,2\}\}$ est l'ensemble des sous-ensembles de $\{1,2\}$. Il est de cardinal 4.

Remarque 1.1 — $\{\emptyset\}$ est un ensemble d'ensembles, qui ne contient que l'ensemble vide comme élément. Il est de cardinal 1.

Pour définir un ensemble au delà des ensembles de référence, il y a principalement deux méthodes :

1. la description par extension : il s'agit de décrire explicitement l'ensemble à partir d'un ou d'autres ensemble. Par exemple

$$\{2k, k \in \mathbb{Z}\}$$

est l'ensemble des entiers relatifs pairs. En général, un tel ensemble s'écrit

$$\{f(x), x \in X\}$$
 où X est un ensemble donné et f une fonction.

2. la description par compréhension : il s'agit de décrire un ensemble comme les éléments d'un ensemble donné vérifiant une certaine propriété. Formellement cela s'écrira

$$\{x \in X, P(x)\}$$
 où $P(x)$ est une proposition logique.

Par exemple

$$\{x \in \mathbb{R}, \cos(x) = 0\}$$

est l'ensemble des réels pour lesquelles l'égalité cos(x) = 0 est vraie.

Exemple 4 — Décrire l'ensemble $\{x \in \mathbb{R}, \cos(x) = 0\}$ par une présentation par extension.

On sait que $\cos(x) = 0$ si et seulement s'il existe $k \in \mathbb{Z}$ tel que $x = \frac{\pi}{2} + k\pi$. Ainsi

$$\{x\in\mathbb{R},\cos(x)=0\}=\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\}.$$

1.2. Sous-ensemble, parties d'un ensemble

Dans cette partie, E est un ensemble quelconque.

Définition 2 | Sous-ensemble -

Soit F un ensemble, on dit que $F \subset E$ (que F est inclus dans E) si

 $\forall x \in F, x \in E$.

Remarque 1.2 — On dit aussi que

- F est une partie de E,
- F est un sous-ensemble de E.

$_{-}$ Définition 3 | Ensemble des parties de $\rm E$ $_{-}$

On appelle **ensemble des parties** de E et on note $\mathscr{P}(E)$ l'ensemble formé par tous les sous ensembles de E.

Remarque 1.3 — On a équivalence entre

- 1. $F \subset E$
- 2. $F \in \mathscr{P}(E)$.

Exemple 5 — Les ensembles suivants sont des parties de **R** :

- les entiers naturels N,
- les réels positifs **R**₊,
- les intervalles [a, b] (et les autres intervalles ...)
- plein d'autres (imaginons $\{2\} \cup [3,5] \cap \mathbf{Q}$).

1.3. Opérations sur les ensembles

Si $F \subset E$ et $G \subset E$ sont des parties de E, on peut réaliser différentes opérations pour construire d'autres parties de E.

Définition 4 | **Opérations sur les ensembles**

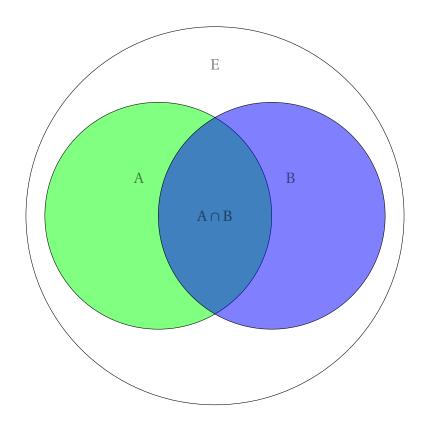
Soient F et G deux parties de E. On définit :

- le complémentaire de E, noté F (ou EF) : $F = \{x \in E : x \notin F\}$. C'est l'ensemble des éléments de E qui ne sont pas dans F.
- l'union, notée, F∪G = {x ∈ E : x ∈ F ou x ∈ G}. C'est l'ensemble des éléments de E qui appartiennent au moins à F ou G. On le prononce "F union G" ou "l'union de F et G".
- l'intersection, notée, $F \cap G = \{x \in E : x \in F \text{ et } x \in G\}$. C'est l'ensemble des éléments de E qui appartiennent à F et à G. On le prononce "F inter G" ou "l'intersection de F et G".

• si $F \subset G$, on peut définir $G \setminus F = \{x \in G, x \notin F\}$ que l'on appelle "G privé de F".

Remarque 1.4 — Pour tout ensemble E:

- $\overline{E} = \emptyset$
- $\overline{\emptyset} = E$
- $\operatorname{si} F \subset E, \overline{F} = F$



X

Attention

L'union correspond au "OU" logique, qui n'est pas exclusif.

Remarque 1.5 —

- le complémentaire correspond au "NON" logique,
- l'intersection correspond au "ET" logique.

Exemple 6 — Déterminer :

1.
$$]-5,2[\cap \mathbf{R}_{+}]$$

- 2. $]-\infty,0] \cup \mathbf{R}_{+}^{*}$ 3. $]_{R_{+}}$

Proposition 1 | Distributivité →

Soient A, B, C des parties de E. Alors:

- 1. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$,
- 2. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Théorème 1 | Lois de de Morgan

Soient A et B deux parties de F, on a

- 1. $\overline{A \cup B} = \overline{A} \cap \overline{B}$,
- 2. $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Vocabulaire

Soient $A_1, \dots A_n$ des parties de E. Si

- 1. $\bigcup_{i=1}^{n} A_i = E$ (l'union des ensembles donne l'ensemble complet)
- 2. pour tout i, j des indices avec $i \neq j$, $A_i \cap A_j = \emptyset$ (les parties sont deux à deux disjointes),

alors on dit que les sous-parties A_i forment une partition de E. Par exemple si $A \subset E$, alors A et \overline{A} forment toujours une partition de E. Il sera très utile, notamment en probabilités, de trouver des partitions d'ensembles.

Remarque 1.6 — Ces lois ont en mettre en lien avec les formules propositionnelles

- 1. $\operatorname{non}(P \cup Q) = (\operatorname{non} P) \times T (\operatorname{non} Q)$,
- 2. $\operatorname{non}(P \operatorname{ET} Q) = (\operatorname{non} P) \operatorname{OU}(\operatorname{non} Q)$.

Le lien est même exact en prenant les propositions

- $P: x \in A$,
- Q: $x \in B$.

Définition 5 | **Produit cartésien** —

Si E et F sont deux ensembles, on peut former un autre ensemble appelé leur **produit cartésien** (ou simplement produit) E × F. C'est l'ensemble des couples formés d'un élément de E d'un élément de F, ou encore

$$E \times F = \{(x, y), x \in E, y \in F\}.$$

Remarque 1.7 — En terme de quantification, c'est la même chose d'écrire

$$\forall (x, y) \in E \times F \text{ ou } \forall x \in E, \forall y \in F.$$

Remarque 1.8 — On peut le faire avec un nombre quelconque d'ensemble : par exemple $E \times F \times G$ est l'ensemble des triplets (x, y, z) avec $x \in E, y \in F, z \in G$.

Définition 6 | **Ensemble** E^n

Si $n \ge 1$ est un entier, on peut considérer les produits $E^n = E \times \cdots \times E$ où l'ensemble E est répété n fois. C'est l'ensemble des n-uplets

$$\{(x_1, \dots, x_n), x_1 \in E, \dots x_n \in E\}.$$

Exemple 7 — On a déjà rencontre \mathbb{R}^2 et \mathbb{R}^3 respectivement les ensembles de couples et de triplets de nombres réels. De même, on peut définir \mathbb{R}^n l'ensemble des n-uplets de réels. Par exemple (1, 1, 1, ... 1), où 1 est répété n fois, est un élément de \mathbb{R}^n .

Méthode (Montrer que deux ensembles sont égaux)

Pour montrer que deux ensembles sont égaux, on a deux solutions.

Méthode 1 : raisonner par équivalence. C'est une méthode directe. Dans certains cas c'est la plus rapide, mais elle peut mener à des erreurs de raisonnement si on se trompe sur les équivalences.

- 1. On fixe un élément quelconque $x \in E$.
- 2. On écrit la définition de $x \in E$.
- 3. On "déroule des équivalence" en espérant arriver à $x \in F$ à la fin.

Méthode 2 : raisonner par double inclusion. Pour montrer qu'un ensemble E = F, on montre séparément que $F \subset E$ et $E \subset F$. Ici dans chacune des étapes on peut raisonner par implication, ce qui est moins dangereux que raisonner par équivalence.

Exemple 8 — Soient $A = \{n-1, n \in \mathbb{N}\}\$ et $B\{x \in \mathbb{Z} : x \ge -1\}$. Montrer que A = B.

On raisonne par double inclusion:

A ⊂ B. Soit $x \in A$, montrons que $x \in B$. $x \in A$ signifie qu'il existe $n \in \mathbb{N}$ tel que x = n - 1. Ainsi $x \in \mathbb{Z}$ car c'est la différence entre deux entiers. De plus, comme $n \ge 0$, $n - 1 \ge -1$ donc $x \ge -1$. Ainsi $x \in B$. C'est vrai quelque soit $x \in A$, donc $A \subset B$.

B ⊂ A. Soit $x \in B$. Montrons que $x \in A$, c'est à dire qu'il existe $n \in \mathbb{N}$ tel que x = n - 1. Cherchons n:

$$x = n - 1 \iff n = x + 1.$$

Comme $x \in \mathbb{Z}$, n = x + 1 est bien un entier, et comme $x \ge -1$, $n \ge 0$, donc $n \in \mathbb{N}$. Ainsi n = x + 1 convient, donc $x \in A$. C'est vrai quelque soit $x \in B$, donc $B \subset A$.

Par double inclusion, on a montré que A = B.

1.4. Cas du cardinal fini

Définition 7 | **Ensemble fini, cardinal** —

Un ensemble E est dit **fini** s'il est en bijection avec un ensemble [1, n] pour un certain entier $n \in \mathbb{N}$. Dans ce cas là, l'entier n est unique et on l'appelle cardinal de E, noté $n = \operatorname{card}(E)$.

Remarque 1.9 — Par convention, le cardinal de l'ensemble vide est 0.

Proposition 2 —

Soient A et B deux ensembles de cardinal fini. Si $A \subset B$ alors $card(A) \leq card(B)$.

Dans la suite de cette partie, E est un ensemble de cardinal *n*.

$_{-}$ Proposition 3 | Parties de $\rm E_{-}$

Soit E un ensemble de cardinal n et $p \in [1, n]$. Il y a exactement $\binom{n}{p}$ parties de E qui sont de cardinal p.

Proposition 4 –

Soit E un ensemble de cardinal n, alors $\mathcal{P}(E)$ est un ensemble de cardinal 2^n .

Preuve Comme les parties de E ont entre 0 et n éléments, le nombre total de parties de E est

card
$$\mathscr{P}(E) = \sum_{k=0}^{n} \binom{n}{k}$$

$$= \sum_{k=0}^{n} \binom{n}{k} 1^{k} 1^{n-k}$$

$$= (1+1)^{n} \text{ par la formule du binôme de Newton}$$

$$= 2^{n}.$$

Proposition 5

Soient A et B deux parties finies d'un ensemble E, alors

$$card(A \cup B) = card(A) + card(B) - card(A \cap B)$$
.

Proposition 6 —

Si card(E) = n et card(F) = m alors

- 1. $card(E \times F) = m \times n$,
- 2. $\operatorname{card}(\mathcal{F}(E,F)=m^n)$.

Exemple 9 — Si $E = \{A, B\}$ et $F = \{0, 1, 2\}$ alors

$$E \times F = \{(A,0), (A,1), (A,2), (B,0), (B,1), (B,2), \}.$$

On obtient bien $2 \times 3 = 6$ éléments.

2. APPLICATIONS

Dans toute cette partie, E, F et G sont des ensembles.

$_{-}$ **Définition 8** | **Application de** E **dans** F $_{-}$

Une application f de E dans F est l'association de tout élément $x \in E$ à un unique élément $f(x) \in F$.

Vocabulaire

Soit f une application de E dans F.

- 1. Soit $x \in E$. L'image de x par f est l'élément f(x) de f.
- 2. Soit $y \in F$. On dit que $x \in E$ est un antécédent de y par f si f(x) = y.

Remarque 2.1 — L'ensemble des applications (ou des fonctions) de E dans F est un ensemble, parfois noté $\mathscr{F}(E,F)$.

Exemple 10 — L'application de E dans E qui à un élément x associe toujours le même élément x s'appelle **l'application identité de** E **dans** E. On la note I d_E .

Exemple 11 — Les fonctions réelles sont les applications de \mathbf{R} dans \mathbf{R} (donc avec $\mathbf{E} = \mathbf{F} = \mathbf{R}$).

Définition 9 | **Image d'une application**

Soif f une application de E dans F. L'image de E par f est l'ensemble

$$f(E) = \{ f(x), x \in E \}.$$

Exemple 12 — Si $f : \mathbf{R} \to \mathbf{R}$ est l'application définie par $f(x) = x^2$, alors $f(\mathbf{R}) = \mathbf{R}_+$.

Définition 10 | **Image directe d'une partie** =

Soit $f : E \to F$ une application entre deux ensembles.

Si A \subset E est une partie de E, **l'image (ou image directe)** de A par f est l'ensemble

$$f(A) = \{ f(x) \in A : x \in E \}.$$

C'est un sous-ensemble de F. Il est caractérisé par

$$y \in f(A) \iff \exists x \in A : f(x) = y.$$

Exemple 13 — Soit $f: x \mapsto x^2$ la fonction carrée sur **R**.

- 1. L'image directe de [-2,4[est f([-2,4[) = [0,16[.
- 2. L'image réciproque de $[2, +\infty[$ est $f^{-1}([2, +\infty[) =] -\infty, \sqrt{2}] \cup [\sqrt{2}, +\infty[.$

Définition 11 | Composée de deux applications

Soit f une application de E dans F et g une application de F. Alors on peut définir la composée de f et g par

$$\forall x \in E, g \circ f(x) = g(f(x)).$$

C'est une application de E dans G.

Remarque 2.2 — Pour définir $g \circ f$, il suffit que g soit définie sur $f(E) \subset F$ et pas forcément sur F tout entier.

Exemple 14 —

- 1. soit f la fonction définie sur \mathbf{R} par $f(x) = \cos(x^2 + 1)$ et $g = \exp$ la fonction exponentielle. On peut bien définir $g \circ f$ sur \mathbf{R} tout entier.
- 2. soit f la fonction définie sur \mathbf{R} par $f(x) = x^2 1$, et ln la fonction logarithme népérien définie sur $]0, +\infty[$. On peut définir $\ln \circ f$ sur $\mathbf{R} \setminus [-1, 1]$ car c'est le domaine sur lequel f est strictement positive, donc f(x) est dans le domaine de ln.

Définition 12 | Application surjective

Une application $f : E \to F$ est **surjective** si g(E) = F. (C'est à dire que tous les éléments de F sont dans l'image de E, ou encore que tout élément de F admet un **antécédent** par f.).

Méthode (Montrer qu'une application est surjective)

Pour montrer qu'une application $f : E \to F$ est surjective, il faut montrer que

$$\forall y \in F, \exists x \in E, f(x) = y.$$

- 1. On fixe un élément quelconque de $y \in F$.
- 2. On cherche un $x \in E$, f(x) = y, par exemple en résolvant une équation.
- 3. On conclut que f est surjective.

Exemple 15 — On veut montrer que $f : \mathbf{R} \to \mathbf{R}$ définie par $x^3 + 1$ est surjective.

Soit $y \in \mathbf{R}$, cherchons un réel x tel que f(x) = y, autrement dit $y = x^3 + 1$ donc $x = \sqrt[3]{y-1}$. Comme x existe pour tout réel y, on conclut que f est surjective.

Remarque 2.3 — Avec les théorèmes de continuité (comme le Théorème des Valeurs Intermédiaires que nous reverrons), on peut montrer qu'une fonction est surjective en étudiant son tableau de variation.

Remarque 2.4 — Montrer qu'une application n'est pas surjective est très simple. En effet la négation de la propriété

$$\forall y \in F, \exists x \in E, f(x) = y$$

est une proposition en "il existe". Il suffit donc de trouver un élément de y de F qui n'est jamais atteint par f. Par exemple on peut dire $\exp : \mathbb{R} \to \mathbb{R}$ n'est pas surjective car -1 n'appartient pas à l'image de f (ou autrement dit, -1 n'a pas d'antécédent).

Remarque 2.5 — La notion de surjectivité dépend de ce qu'on prend pour ensemble d'arrivée. Ainsi un tableau de variation montre aisément que $\exp: \mathbb{R} \to]0, +\infty[$ est surjective.

Définition 13 | Application injective

Une application $f : E \to F$ est **injective** pour tout $(x, y) \in E^2$, si $x \neq y$ alors $f(x) \neq f(y)$. (C'est à dire que deux éléments distincts de E auront une image différente par f.)

4

Méthode (Montrer qu'une application est injective)

Pour prouver qu'une application est injective, on utilise souvent la **contraposée** de la définition. C'est à dire que si f(x) = f(y) alors x = y. On commence donc par supposer que f(x) = f(y) et par raisonnement ou calcul on arrive à xet y.

Exemple 16 — Par exemple, montrons que l'application de \mathbf{R}_+ dans \mathbf{R} définie par $f(x) = x^2 + 1$ est injective. Supposons qu'il existe $(x, y) \in \mathbf{R}^2$ tels que f(x) = f(y), alors

$$f(x) = f(y)$$
 donc $x^2 + 1 = y^2 + 1$
donc $x^2 = y^2$
donc $x = -y$ ou $x = y$
donc $x = y$ car x et y sont des réels positifs.

Donc x = y. Ainsi f est injective.

Théorème 2

Soit f une fonction réelle strictement monotone. Alors f est injective.

Remarque 2.6 — Il est facile de montrer qu'une application n'est pas injective : il suffit de trouver deux éléments x et y distincts de l'ensemble de départ qui ont la même image par f.

Définition 14 | Application bijective

Une application f de E dans F est **bijective** s'il existe une application g de F dans E telle que $f \circ g = Id_F$ et $g \circ f = Id_E$. C'est équivalent à l'assertion

$$\forall y \in F, \exists! x \in E, f(x) = y.$$

Remarque 2.7 — Une application bijective est aussi appelée une **bijection**. On dit aussi que E et F sont des ensembles *en bijection*.

Notation

La fonction g est appelée **bijection réciproque** de f, notée souvent f^{-1} .

Théorème 3 -

Une application est bijective si et seulement si elle est injective et surjective.

Méthode (Montrer qu'une application est bijective)

Pour montrer que qu'une application $f: E \to F$ est surjective, on a deux méthodes.

Méthode 1. On montre que f est injective et surjective.

Méthode 2. On prouve l'assertion

$$\forall y \in F, \exists ! x \in E, f(x) = y.$$

Pour cela

- 1. On fixe *y* quelconque un élément de F.
- 2. On prouve qu'il existe un unique $x \in E$, f(x) = y, parfois en résolvant l'équation y = f(x).

Remarque 2.8 — Une étude de fonction, et un tableau de variations, peut aussi prouver qu'une fonction est bijective. Cela sera un Théorème dans un chapitre ultérieur.

Remarque 2.9 — La méthode par la résolution de l'équation est la seule qui donne une formule explicite pour la réciproque. Attention, on ne trouve pas toujours de formule explicite; c'est pour cela que l'on a introduit la fonction arctangente par exemple, qui était définie comme la réciproque de tangente sur $]-\frac{\pi}{2},\frac{\pi}{2}[$.

Remarque 2.10 — Dans l'exemple $f: x \in \mathbb{R} \to x^3 + 1 \in \mathbb{R}$, on a en fait montré la bijectivité par la deuxième méthode. Celle-ci à l'avantage de nous donner une formule pour $f^{-1}(y)$. Ici $f^{-1}(y) = \sqrt[3]{y-1}$.

Remarque 2.11 — Il est facile de montrer qu'une fonction n'est pas bijective, il suffit de montrer qu'elle n'est pas surjective ou qu'elle n'est pas injective.

Remarque 2.12 — On peut résumer les propriétés d'injectivité / surjectivité / bijectivité ainsi : soit $f: E \to F$ une application, alors elle est

1. **injective** si pour tout y dans F, y admet **au maximum** un antécédent par f. C'est à dire que pour tout $y \in F$, l'équation

$$y = f(x)$$

admet aucune ou une solution dans E.

2. **surjective** si pour tout y dans F, y admet **au moins** un antécédent par f. C'est à dire que pour tout $y \in F$, l'équation

$$y = f(x)$$

admet au moins solution dans E.

3. **bijective** si pour tout y dans F, y admet **exactement** un antécédent par f. C'est à dire que pour tout $y \in F$, l'équation

$$y = f(x)$$

admet exactement une solution dans E.

Théorème 4

- 1. La composée de deux applications surjectives est surjective.
- 2. La composée de deux applications injectives est injective.
- 3. La composée de deux applications bijectives est bijective.

2.2. Le cas particulier du cardinal fini

Théorème 5 | Lien avec le cardinal —

Soit f une application entre E et F deux ensembles de cardinal fini, alors

- 1. si f est surjective alors card(E) \geq card(F)
- 2. si f est injective alors card(E) \leq card(F)
- 3. si f est bijective alors card(E) = card(F)

Théorème 6

Soit E et F deux ensemble de cardinal fini. Ils sont en bijection si et seulement card(E) = card(F).

Proposition 7 —

Soit E et F deux ensemble de même cardinal n. Si E \subset F alors E = F.

- Proposition 8 -

Si card(E) = n et card(F) = m alors card($\mathscr{F}(E \times F)$) = m^n .