TD 1: Rappels de terminale, calculs

CALCULS

Exercice 1 Simplifier les calculs suivants

1.
$$5+2\times\frac{7}{3}$$

3.
$$\frac{12}{x-1} + \frac{3x-9}{x^2-1} - \frac{x^2}{x^3-x}$$

4. $(\frac{5}{2} - \frac{1}{4}) \times (\frac{12}{7} + \frac{11}{2})$.

Exercice 2 Transformer chacune des expressions suivantes en expressions égales avec le moins de racines carrées possibles (notamment, on ne veut aucune racine carrée au dénominateur).

1.
$$A = \frac{5}{2-\sqrt{7}}$$
,

4.
$$D = \left(\sqrt{2 - \sqrt{2}}\right)^2$$

2.
$$B = \sqrt{\frac{64}{64}} + \sqrt{\frac{128}{128}}$$

5.
$$E = \sqrt{12x^2 - 72x + 108},$$

3.
$$C = \frac{\sqrt{2}}{1-\sqrt{2}} \times \frac{\sqrt{3}}{1-\sqrt{3}}$$
,

6.
$$F = \left(\sqrt{7 - 2\sqrt{6}} + \sqrt{7 + 2\sqrt{6}}\right)$$

1. A = $(-1)^n \times (-1)^{n+1} \times 3$. C = $\frac{3^{-2}2^{-2}}{3^{-7}2^2}$, (-1)ⁿ⁺², 4. D = $x\sqrt{x}x^2 \times 7\frac{x^2}{x^3}$. 2. B = $\frac{2^4 \times 4^2}{8 \times 3^{-4}}$,

RAPPELS SUR LES SUITES

Exercice 4 Parmi les suites suivante, déterminer lesquelles sont arithmétiques ou géométriques :

1.
$$u_n = 3 + 5n$$
,

4.
$$x_n = \sqrt{2}^{2n+1}$$
,

1.
$$u_n = 3 + 5n$$
,
2. $v_n = 12 - \sqrt{n}$,
3. $w_n = -7^n$,

5.
$$y_n$$
 = le n-ieme entier positif pair,

3.
$$w_n = -7^n$$
,

6.
$$z_n = \cos(n\pi)$$

1. $A = \frac{5}{2-\sqrt{7}}$, 2. $B = \sqrt{64} + \sqrt{128}$, 3. $C = \frac{\sqrt{2}}{1-\sqrt{2}} \times \frac{\sqrt{3}}{1-\sqrt{3}}$, 4. $D = \left(\sqrt{2-\sqrt{2}}\right)^2$, 5. $E = \sqrt{12x^2 - 72x + 108}$, 6. $F = \left(\sqrt{7-2\sqrt{6}} + \sqrt{7+2\sqrt{6}}\right)^2$ Exercice 5 Soit (u_n) une suite arithmétique de premier tèrme u_0 et de raison r.

1. Montrer que

$$\sum_{k=0}^{n} u_k = u_0 + \dots + u_n$$
$$= (n+1) \times \frac{u_0 + u_n}{2}.$$

2. En déduire la valeur des sommes

$$2+4+6\cdots+2n$$
 et $1+3+\cdots+2n+1$.

Exercice 6 Déterminer une expression explicite, et éventuellement la limite, de la suite définie par

$$u_0 = 2$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \frac{u_n}{2} + 10.$

Exercice 7 On définit la suite (u_n) par

$$u_0 = 2 \text{ et } \forall n \in \mathbb{N}, u_{n+1} = u_n^2.$$

- 1. Calculer les premiers termes de la suite.
- 2. Conjecturer une formule pour u_n et la démontrer par récurrence.
- 3. On souhaite montrer le résultat précédent d'une autre façon. On définit une suite auxiliaire (v_n) par $v_n = \ln(u_n)$. Démontrer que cette suite et bien définie et géométrique. En déduire l'expression explicite de (u_n) .

Exercice 8 On définit la suite (u_n) par

$$u_0 = 1$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{eu_n}$.

- 1. Démontrer par récurrence que pour tout $n \in \mathbb{N}$, $u_n > 0$.
- 2. On définit la suite (v_n) par $v_n = \ln(u_n)$. Montrer que (v_n) est une suite arithmético-géométrique.
- 3. En déduire une expression explicite pour (v_n) puis pour (u_n) .
- 4. Peut-on déterminer une limite pour u_n ?

POLYNÔMES

Exercice 9 Réaliser l'étude complète des trinômes du second degré suivants : forme canonique, racines, variations, signe, courbe représentative.

1.
$$P(x) = x^2 - 3x + 2$$
,

2.
$$Q(x) = -3x^2 + 18x - 27$$
,

3.
$$R(x) = -2x^2 + 4x - 7$$
.

Exercice 10 Résoudre les équations suivantes en se ramenant à l'étude d'un polynôme du second degré :

1.
$$x^4 - 6x^2 + 5 = 0$$
,

2.
$$-x^{10} + 3x^9 - 3x^8 = 0$$
,

3.
$$e^{6x} + 4e^{3x} = 1$$
.

Exercice 11

Soit f la fonction définie pour tout réel x par $f(x) = \frac{3-2x}{e^x}$.

- 1. Montrer que pour tout nombre réel x, en a $f'(x) = (2x 5) \times e^{-x}$.
- 2. Étudier les variations de la fonction f.
- 3. Déterminer une équation de la tangente à la courbe représentative de la fonction f au point d'abscisse 0.

Exercice 12 Soit f la fonction définie pour tout réel x par $f(x) = e^x + \frac{1}{e^x}$.

- 1. On note f' la dérivée de la fonction f. Calculer f'(x).
- 2. Donner le tableau de variation de f.
- 3. En déduire que pour tout réel x, $e^x + e^{-x} \ge 2$.