TD 5 - Fonctions usuelles, généralités sur les fonctions

GÉNÉRALITÉS SUR LES FONCTIONS

3. $h: x \mapsto e^{x^2 \cos(x)}$

Exercice 1 Soit $f: x \mapsto x + 1$, $g: x \mapsto \ln(x)$ et $h: x \mapsto \sqrt{x}$. Donner les domaines de définitions et les expressions de $h \circ$ $f, h \circ g, f \circ h, f \circ g, g \circ h, g \circ f.$

Exercice 2 Donner les domaines de définitions des fonctions $f \circ g$ et $g \circ f$ dans les cas suivants :

1.
$$f(x) = \sqrt{x^2 - 2}, g(x) = \frac{1}{x}$$

2.
$$f(x) = e^{x^3}$$
, $g(x) = \ln(x)$,

3.
$$f(x) = 3^x$$
 et $g(x) = \ln(2x - 10)$.

Exercice 3 Soit *f* une fonction dérivable paire. Montrer que f' impaire. Que dire si f est impaire?

Exercice 4 Les fonctions suivantes sont-elles paires, im- 3. $\sin(x) = -\frac{\sqrt{3}}{3}$, paires?

1.
$$f: x \mapsto \frac{\ln(x+1)}{\ln(x-1)}$$

2.
$$g: x \mapsto \sin(x + x^3 + x^5)$$
,

Exercice 5 Montrer que les fonctions suivantes sont périodiques. On essaiera de trouver des périodes les plus petites possibles).

1.
$$f: x \mapsto \cos(2x) + \sin(4x)$$
,

2.
$$\lfloor 2x \rfloor - 2x$$

3.
$$\tan(\frac{x}{2}) + \tan(\frac{x}{8})$$
,

4.
$$cos(2\pi \lfloor x \rfloor)$$
.

FONCTIONS DE RÉFÉRENCE

Exercice 6 Résoudre les équations suivantes :

1.
$$e^x + e^{-x} = 5$$
,

2.
$$\ln(x)^2 - 4\ln(x) + 2 = 0$$
,

3.
$$\sin(x) = -\frac{\sqrt{3}}{2}$$

4.
$$\cos(x) + \sin(x) = \sqrt{2}$$
,

5.
$$x = \sqrt{x} - 2$$
.

6.
$$\cos(x)^2 - \sin(x)^2 = \frac{1}{2}$$
.

Exercice 7 En utilisant les symétries et les formules de du- 1. Pour tout $x \in \mathbb{R}$, simplifier plications, calculer $\cos(\frac{9\pi}{8})$ et $\sin(\frac{9\pi}{8})$.

Exercice 8 Montrer que pour tout $x \in \mathbb{R}$,

$$\cos(3x) + 3\cos(x) = 4\cos^3(x).$$

Exercice 9 Résoudre les équations :

- 1. tan(2x) = 1,
- 2. $\tan(x + \frac{\pi}{2}) = \tan(-x)$,
- 3. tan(x+2) = 12.

Exercice 10 Montrer que, pour tout x, y tels les nombres sont bien définis:

$$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}.$$

Exercice 11 Soit *f* la fonction définie par

$$x \in \mathbf{R}^* \to \operatorname{Arctan}(x) + \operatorname{Arctan}(\frac{1}{x}).$$

En dérivant f, déduire les valeurs prises par f.

Exercice 12

$$\cos(\operatorname{Arctan}(x)), \sin(\operatorname{Arctan}(x)), \tan(\operatorname{Arctan}(x)).$$

2. Pour tout $x \in D_{tan}$, justifier qu'il existe un entier k tel que

$$Arctan(tan(x)) = x + k\pi.$$

3. (* Question plus difficile dont on pourra admettre la réponse.) Montrer que

$$\tan(\frac{\pi}{4}) = \tan\left(4\operatorname{Arctan}\left(\frac{1}{5}\right) - \operatorname{Arctan}\left(\frac{1}{239}\right)\right).$$

On pourra utiliser la formule de l'exercice 10.

4. Justifier que

$$-\frac{\pi}{2} < 4 \operatorname{Arctan}\left(\frac{1}{5}\right) - \operatorname{Arctan}\left(\frac{1}{239}\right) < \pi.$$

5. Montrer la Formule de Machin:

$$\frac{\pi}{4} = 4 \operatorname{Arctan}\left(\frac{1}{5}\right) - \operatorname{Arctan}\left(\frac{1}{239}\right).$$