TD 6 - Ensembles et applications

ENSEMBLES

Exercice 1 Les ensembles suivants sont-ils majorés, minorés? Si oui, donner les bornes et dire si elles sont atteintes.

1.
$$\{x \in \mathbf{R}, \cos(x) = 1\}$$

3.
$$\{e^{-n}, n \in \mathbb{N}\}$$

1.
$$\{x \in \mathbf{R}, \cos(x) = 1\},$$
 3. $\{e^{-n}, n \in \mathbf{N}\},$ 2. $\{x \in \mathbf{R}_+, \cos(x) = 1\},$ 4. $\{e^{(-1)^n n}, n \in \mathbf{N}\},$

4.
$$\{e^{(-1)^n n}, n \in \mathbb{N}\}$$

Exercice 2 Écrire avec des quantificateurs les sous ensembles des suites réels suivants :

- 1. A : l'ensemble des suites 4. D : l'ensemble des suites majorées
- 2. B: l'ensemble des suites 5. E: l'ensemble des suites minorées,
- 3. C: l'ensemble des suites 6. F: l'ensemble des suites croissantes,
- décroissantes,
- convergentes,
 - bornées.

Montrer que $F = A \cap B$. Donner deux autres inclusions vraies et deux inclusions fausses.

Exercice 3 Déterminer l'ensemble des parties des ensembles {0, 1, 2, 3} et {A, B, C}.

Exercice 4 Soit E un ensemble à n éléments et $p \in \mathbb{N}$. Donner card(\mathbb{F}^p) et card($\mathscr{P}(\mathbb{F}^p)$).

Exercice 5 Soient A, B et C trois parties d'un ensemble E. Montrer que B = C si et seulement si $A \cup B = A \cup C$ et $A \cap B =$ $A \cap C$.

Exercice 6 Expliciter les trois ensembles suivants :

$$\bigcap_{n\in\mathbb{N}^*} \left| -\frac{1}{n}, \frac{1}{n} \right|, \quad \bigcap_{p=1}^{+\infty} \left[-\frac{1}{p}, \frac{2p+1}{p} \right], \quad \text{et } \bigcup_{k=1}^{+\infty} \left(\left[-k, -\frac{1}{k} \right[\cup \left] \frac{1}{k}, k \right] \right).$$

Exercice 7 Montrer que chacun des ensembles suivants est un intervalle, éventuellement vide ou réduit à un point

$$I_1 = \bigcap_{n=1}^{+\infty} \left[3, 3 + \frac{1}{n^2} \right[\text{ et } I_2 = \bigcap_{n=1}^{+\infty} \left] -2 - \frac{1}{n}, 4 + n^2 \right].$$

semble E. Montrer que

$$card(A \cup B \cup C) = card(A) + card(B) + card(C)$$

- $card(A \cap B) - card(A \cap C) - card(B \cap C) + card(A \cap B \cap C).$

Exercice 9 Soient A, B et C trois parties d'un ensemble E. Établir l'égalité:

$$A \cup B \cup C = (A \setminus B) \cup (B \setminus C) \cup (C \setminus A) \cup (A \cap B \cap C).$$

APPLICATIONS

Exercice 10 Dans chacun des cas, la fonction f de E dans F est-elle injective, surjective, bijective?

1.
$$E = \mathbf{R}, F = \mathbf{R}, f = \cos$$

4.
$$E = F = (0, +\infty), f(x) = \frac{1}{x}$$

1.
$$E = \mathbf{R}$$
, $F = \mathbf{R}$, $f = \cos$, 4. $E = F =]0, +\infty[, f(x) = $\frac{1}{x}$, 2. $E = \mathbf{R}$, $F = [-1, 1]$, $f = \cos$, 5. $E = F = \mathbf{R}^*$, $f(x) = \frac{1}{x}$,$

5.
$$E = F = \mathbf{R}^*, f(x) = \frac{1}{x}$$

3.
$$E =]-\pi, \pi[, F = [-1, 1], f = 6$$
. $E = \mathbf{R}, F = \mathbf{R}_+, f = \exp$. cos,

Exercice 11

1. Soit f la fonction définie par $f(x) = x^2 + 1$. Déterminer f([-2,3])?

Exercice 8 Soient A, B, C deux trois parties finies d'un en- 2. Soit f la fonction de \mathbb{R}^2 définie par $f(x,y) = (x,xy-y^3)$. Est-elle injective? surjective?

> **Exercice 12** Soit f la fonction réelle définie par f(x) = $\ln(e^x+1)$.

- 1. Vérifier que f est bien définie sur \mathbf{R}
- 2. Donner l'image de \mathbf{R} par f.
- 3. Donner $f(\mathbf{R}_{\perp})$, $f(\mathbf{R}_{\perp})$ et f([0,1]).

Exercice 13 Soit $S: \mathbb{Z} \to \mathbb{Z}$ définie par S(n) = n + 1.

- 1. Montrer que S est bijective.
- 2. Oue dire de $S: \mathbb{N} \to \mathbb{N}^*$?
- 3. Que dire de $S: \mathbb{N} \to \mathbb{N}$?

Exercice 14 Les applications sont elles injectives, surjectives, bijectives? Si elles sont bijectives, donner la bijection réciproque.

- 1. $f: k \in \mathbb{N} \longrightarrow 3k + 1 \in \mathbb{N}^*$.
- 2. $g: \mathbb{R} \setminus \{5\} \to \mathbb{R} \setminus \{2\}$ définie par $g(x) = \frac{3+2x}{x-5}$.
- 3. $h: \mathbb{R} \to \mathbb{R}^+$ définie par $h(y) = \sqrt{y^2 + y + 1}$.
- i: ℝ → ℝ définie par i(t) = e^{t-1}/e^{t+1}.
 j: ℝ² → ℝ² définie par j(x, y) = (x + 2y, 5y 3x).

- 2. Montrer que si f et g sont surjectives, alors $g \circ f$ est suriective.
- 3. Montrer que si f et g sont bijectives, alors $g \circ f$ est bijective et donner sa bijection réciproque.

Exercice 16 Soit $f: E \to F$ et $g: F \to E$ des fonctions. Montrer que si $f \circ g \circ f$ est bijective, alors f et g le sont aussi.

Exercice 17 Soient E, F, G et H des ensembles, $f : E \rightarrow F, g :$ $F \rightarrow G$ et $h : G \rightarrow H$ trois applications.

- 1. Montrer que si $g \circ f$ est injective, alors f est injective. 3. f + g fg. Qu'en est-il de g?
- 2. Montrer que si $g \circ f$ est surjective, alors g est surjective. Qu'en est-il de f?
- 3. Montrer que si $g \circ f$ et $h \circ g$ sont bijectives, alors f, g et hsont bijectives. La réciproque est-elle vraie?

POUR ALLER PLUS LOIN

Exercice 18 Soit A une partie de E, on appelle fonction caractéristique de A l'application f de E dans l'ensemble à deux éléments {0, 1}, telle que :

$$f(x) = \begin{cases} 0 & \text{si } x \notin A \\ 1 & \text{si } x \in A \end{cases}$$

Soit A et B deux parties de E, f et g leurs fonctions caractéristiques. Montrer que les fonctions suivantes sont les fonctions caractéristiques d'ensembles que l'on déterminera :

- 1. 1-f.
- 2. fg.

Exercice 19 Soit A et B deux parties de E. Résoudre dans P(E) les équations

- 1. $A \cap X = B$
- 2. $A \cup X = B$

Exercice 20 Soient A et B deux parties d'un ensemble E. La différence symétrique de A et B est l'ensemble défini par

$$A\Delta B = A \cup B \setminus A \cap B$$
.

- 1. Montrer que $A\Delta B = B \setminus A \cup A \setminus B$.
- 2. Faire un dessin!
- 3. Que dire si $A\Delta B = A \cap B$.
- 4. Soit C une partie de E. Montrer que $A\Delta B = A\Delta C$ si et seulement si B = C.
- 5. Résoudre dans $\mathscr{P}(E)$ l'équation $A\Delta X = \emptyset$.
- 6. Résoudre dans $\mathcal{P}(E)$ l'équation $A\Delta X = S$ où S est un ensemble donné.