TD 7 - Suites

LIMITES DE SUITES

1.
$$u_n = n + \frac{1}{2^n}$$
, $\ln(n)^{-2}$ 4. $t_n = 5n^2 - 4n^3$.
2. $v_n = 5\ln(n)^3 - 3$. $w_n = 5^{-n} + \left(\frac{1}{2}\right)^n$,

Exercice 2 Déterminer les limites (si elles existent) des suites suivantes.

1.
$$u_n = \left(\frac{5}{2}\right)^n \times n^2$$
, 3. $u_n = \sqrt{n}(-2)^n$, 5. $u_n = \frac{\left(\frac{5}{7}\right)^n - 5}{5n^2}$, 2. $u_n = \left(\frac{2}{5}\right)^n \times n^2$, 4. $u_n = \frac{\sqrt{n}}{1000^n}$, 6. $u_n = \frac{-5n + 10}{0,5^n}$.

Exercice 3 Soient (u_n) et (v_n) deux suites réelles telles que $(u_n + v_n)$ et $(u_n - v_n)$ convergent. Montrer que (u_n) et (v_n) convergent.

Exercice 4 Déterminer les limites (si elles existent) des suites suivantes.

ÉTUDES DE SUITE

Exercice 5 Les suites suivantes sont elles minorées, majorées, bornées?

- 1. la suite *u* définie par $u_n = n^2 + 1$,
- 2. la suite v définie par $v_n = \frac{n-1}{n+2}$
- 3. la suite w définie par $w_n = \cos(n) n$.

Exercice 6 Les suites suivantes sont-elles monotones, strictement monotones? Préciser la nature de la monotonie.

- 1. la suite u définie par $u_n = n^2 + 1$,
- 2. la suite v définie par $v_n = (-1)^n$,
- 3. la suite w définie par $w_0 = 1$ et $w_{n+1} = \frac{w_n}{2}$, 4. la suite x définie par $x_0 = -1$ et $x_{n+1} = \frac{x_n}{2}$,
- 5. la suite y définie par $y_n = \lfloor \frac{n}{2} \rfloor$,
- 6. la suite z définie par $z_n = \frac{n-1}{n+2}$.

Exercice 7 Soit (u_n) la suite définie par $u_0 = 1$ et pour tout entier n,

$$u_{n+1} = \sqrt{2 + u_n}.$$

1. Montrer que pour tout $n \in \mathbb{N}$,

$$0 \le u_n \le 2$$
.

- 2. Montrer que u_n est croissante.
- 3. Que peut-on conclure?

Exercice 8 Soit (u_n) la suite définie par $u_0 \in \mathbf{R}$ et pour tout entier n,

$$u_{n+1} = u_n - u_n^2.$$

- 1. Montrer que si (u_n) converge vers une limite ℓ , alors $\ell =$ 0.
- 2. Montrer que (u_n) est décroissante.
- 3. Dans cette question $u_0 < 0$. Montrer (u_n) diverge vers $-\infty$.

- 4. Dans cette question $u_0 \in [0,1]$. Montrer que pour tout $n \in$ $N, u_n \in [0,1]$. Que peut-on conclure?
- 5. Dans cette question $u_0 > 1$. Quel est le signe de u_1 ? En déduire que la suite a une limite que l'on déterminera.

Exercice 9 Soit (u_n) la suite définie par $u_0 \in \mathbf{R}$ et pour tout entier n,

$$u_{n+1} = u_n + 2n + 3$$
.

- 1. Montrer que la suite (u_n) est croissante.
- 2. Est-elle majorée, minorée?
- 3. Conjecturer et démontrer une formule pour u_n .

SUITES DE RÉFÉRENCE

Exercice 10 Trouver une expression explicites des suites suivantes:

- 1. $u_0 = 12$ et $\forall n \in \mathbb{N}, u_{n+1} = 3u_n 2$
- 2. $u_0 = -2$ et $\forall n \in \mathbb{N}, u_{n+1} = -3u_n + 1$,
- 3. $u_0 = -1$ et $\forall n \in \mathbb{N}, u_{n+1} + 2u_n = 1$,
- 4. $u_0 = 3$ et $\forall n \in \mathbb{N}, u_n = 3u_{n+1} 2$,

Exercice 11 On souhaite étudier la suite (u_n) définie par Montrer que (u_{2n}) et (u_{2n+1}) sont convergentes vers la même $u_0 \in \mathbf{R}$ et pour tout entier $n \in \mathbf{N}$,

$$u_{n+1} = \frac{2}{1+u_n}.$$

- 1. Si $u_0 = -2$, conjecturer et démontrer le comportement de la suite.
- 2. Si $u_0 = 3$, montrer que pour tout entier $n, 0 \le u_n \le 3$.
- 3. On définit une suite (v_n) par

$$v_n = \frac{u_n - 1}{u_n + 2}.$$

Montrer que v_n et géométrique et en déduire une expression de v_n en fonction de n.

4. En déduire une expression de u_n .

Exercice 12 En se ramenant à une suite récurrente linéaire d'ordre 2, trouver une formule explicite pour la suite définie par $u_0 = 1$, $u_2 = e$ et pour tout $n \in \mathbb{N}$, $u_{n+2} = \sqrt{u_{n+1}u_n}$.

SUITES ADJACENTES ET MONOTONES

Exercice 13 On définit la suite (u_n) par pour tout $n \in \mathbb{N}$,

$$u_n = \sum_{k=1}^n \frac{(-1)^k}{k^2}.$$

limite. Que peut-on en déduire pour (u_n) ?

Exercice 14 Montrer que les suites définies par

$$S_n = \sum_{k=1}^n \frac{1}{k^3}$$
 et $u_n = S_n + \frac{1}{n^2}$

convergent vers la même limite.

Exercice 15 Montrer que les suites définies par

$$u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} - 2\sqrt{n}$$
 et $v_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} - 2\sqrt{n+1}$

convergent vers la même limite.

Exercice 16 Soient a et b deux réels vérifiant 0 < b < a. Soient (u_n) et (v_n) des suites définies par $u_0 = a \in \mathbb{R}$, $v_0 = b \in \mathbb{R}$ R et

$$\forall n \in \mathbb{N}, u_{n+1} = \frac{u_n + v_n}{2} \text{ et } v_n = \sqrt{u_n v_n}.$$

Montrer que les suites u et v convergent vers la même limite.

Exercice 17 Soit H_n la suite définie pour $n \ge 1$ par

$$H_n = \sum_{k=1}^n \frac{1}{k}.$$

- 1. Montrer que soit H_n converge, soit H_n tend vers $+\infty$,
- 2. Montrer que quelque soit $n \ge 1$, $H_{2n} H_n \ge \frac{1}{2}$,
- 3. En déduire que H_n tend vers $+\infty$.

Exercice 18 Soit (u_n) une suite croissante convergente vers une limite ℓ . On définit, pour tout $n \in \mathbb{N}$, $v_n = \frac{\sum_{k=0}^n u_k}{n+1}$.

- 1. Montrer que (v_n) est croissante.
- 2. Montrer que pour tout $n \in \mathbb{N}$, $v_{2n} \leq \frac{u_n + v_n}{2}$.
- 3. Montrer que (v_n) converge vers ℓ .

EXERCICES COMPLÉMENTAIRES

Exercice 19 On considère la suite (u_n) définie par $u_0 = 1$ et, pour $n \ge 0$, $u_{n+1} = \frac{u_n}{u_n+1}$.

- 1. Soit f la fonction définie sur]-1; $+\infty$ par $f(x) = \frac{x}{x+1}$ Montrer que si $x \in [0,1]$, alors $f(x) \in [0,1]$.
- 2. Montrer que pour tout $n \ge 0$, $u_n \in [0,1]$.
- 3. Étudier le signe de f(x) x sur $] 1; +\infty[$.
- 4. Montrer que (u_n) est décroissante.

- 5. En déduire que (u_n) converge.
- 6. Déterminer la limite de (u_n) .

Exercice 20

- 1. Montrer que l'équation $x^3 = 1 nx$ admet une seule solution sur $[0, +\infty[$ que l'on note x_n .
- 2. Montrer que la suite $(x_n)_{n\in\mathbb{N}}$ est strictement décroissante.
- 3. Montrer que la suite $(x_n)_{n\in\mathbb{N}}$ est convergente et calculer sa limite ℓ .
- 4. **(Pour plus tard)** Déterminer un équivalent de $x_n \ell$ au voisinage de $+\infty$.

Exercice 21 On définit une suite (u_n) par

$$u_n = e^{u_n} - 1, \qquad u_0 \in \mathbb{R}.$$

- 1. Étudier la fonction $g: x \in \mathbf{R} \mapsto e^x 1 x$. Dresser son tableau variations et son tableau de signe.
- 2. Montrer que (u_n) est croissante.
- 3. Montrer que si (u_n) converge, alors $\lim u_n = 0$.
- 4. Dans cette question, $u_0 \le 0$. Montrer que (u_n) converge.
- 5. Dans cette question $u_0 > 0$. Montrer que (u_n) diverge vers $+\infty$

Exercice 22 On définit une suite (u_n) par

$$u_n = u_n + \frac{1}{\sqrt{u_n}}, \qquad u_0 = 1.$$

Montrer que (u_n) tend vers $+\infty$.

Exercice 23 Soit une suite (u_n) croissante telle que (u_{2n}) converge. Montrer que (u_n) converge.