DEVOIR MAISON 1#

Exercice 5 Déterminer une expression explicite de la suite définie par

$$u_0 = -1$$
 et $\forall n \in \mathbb{N}, u_{n+1} = -u_n + 1$.

La suite admet-elle une limite? si oui, la déterminer.

A rendre pour le jeudi 11 septembre 2025

Exercice 1 Soient *x* et *y* des réels, mettre les expressions suivantes sous la forme $x^n y^m$ où n et m sont des entiers.

- 1. $\frac{x^3y^2}{x^4y}$
- 2. $\left(\frac{xy}{x^2y}\right)^2 \times \frac{xy}{(xy)^3}$
3. $\left(\frac{x}{y^2}\right)^{-2}$

Exercice 2 Résoudre l'inéquation suivante :

$$e^{2x} - 4e^x + 3 > 0.$$

Exercice 3 Établir que $f: x \in \mathbb{R} \mapsto (x-1)^3 - (x+1)^3$ est 1. Montrer que Q admet deux racines réelles distinctes si $p \neq \infty$ une fonction polynomiale de degré 2. Dresser son tableau de variation et donner ses racines.

Exercice 4 Après avoir trouvé une racine évidente de P(x) = $x^3 - x^2 - x + 1$, écrire P sous forme factorisée.

Exercice 6 Déterminer une expression explicite de la suite définie par

$$u_0 = 1, u_1 = 3 \text{ et } \forall n \in \mathbb{N}, u_{n+2} = \frac{3u_{n+1} - u_n}{2}.$$

La suite admet-elle une limite? si oui, la déterminer.

Exercice 7 Soit $p \in [0,1]$. On considère le polynôme de degré

$$Q(x) = px^2 - x + 1 - p$$
.

- $\frac{1}{2}$ et une unique racine (double) si $p = \frac{1}{2}$.
- Justifier que les racines sont x₁ = ^{1-p}/_p et x₂ = 1.
 En fonction de p, déterminer la plus petite racine entre x₁
- 4. Étudier $p \mapsto \frac{1-p}{p}$ pour $p \in [\frac{1}{2}, 1]$.
- 5. On note g la fonction qui à $p \in]0,1]$ associe la plus petite racine entre x_1 et x_2 . Tracer g(p) en fonction de p.