DM # 2 Exprimer $\prod_{j=1}^{p} (i+j)$ avec des factorielles. 2. En déduire que $S = p! \sum_{i=0}^{n} {i+p \choose i}$.

- 3. Montrer, par récurrence sur *n* que

$$\sum_{i=0}^{n} {i+p \choose i} = {p+1+n \choose p+1}$$
 et déduire la valeur de S.

Devoir à rendre le 7 octobre.

Exercice 1 Résoudre dans R l'inéquation

$$|x^2 - 5x + 6| \le |5 - x|.$$

Exercice 2 Simplifier

$$\prod_{i=1}^{n} \frac{2i+3}{2i-1}.$$

Exercice 3 Calculer

- 1. $\sum_{k=1}^{n} \sqrt{2}^{-3n+1}$
- 2. $\prod_{k=1}^{n} q^{k} (q \in \mathbb{R})$ 3. $\prod_{k=1}^{n} (1 + \frac{1}{k})$
- 4. $\sum_{k=0}^{n} 2^{k} \binom{n}{k}$

Exercice 4 Soient $n, p \in \mathbb{N}^*$. On souhaite calculer

$$S = \sum_{i=0}^{n} \left(\prod_{j=1}^{p} (i+j) \right).$$

Exercice 5 Soit $n \in \mathbb{N}^*$, calculer la somme

$$\sum_{1 \le i < j \le n} ij.$$

Exercice 6

- 1. Trouver une suite u_n de forme $u_n = (a + bn)3^n$ telle que pour tout entier n, $u_{n+1} - u_n = n3^n$.
- 2. En déduire $\sum_{k=0}^{n} k3^k$.

Exercice 7 Soit $X = \{\frac{1}{x}, x \in]0, +\infty[\}$. Déterminer si X admet un minimum, un maximum, et des bornes inférieures et supérieures.

Exercice 8 Déterminer les domaines de définition des fonctions suivantes:

$$f: x \mapsto \ln\left(\frac{x-3}{x+2}\right)$$
 et $g: x \mapsto \frac{\ln(4-x^2)}{x^2-1}$.